< Terug naar vorige pagina

Publicatie

Development and validation of a modeling workflow for the generation of image-based, subject-specific thoracolumbar models of spinal deformity

Tijdschriftbijdrage - Tijdschriftartikel

Quantitative dynamic evaluation of spino-pelvic motion in subjects with spinal deformity using optical motion analysis is currently lacking. The aim of this study was to develop and validate subject-specific, thoracolumbar spine multi-body skeletal models for evaluating spino-pelvic kinematics in a spinal deformity population. A new workflow for creating subject-specific spino-pelvic models in a weight-bearing position through computed tomography (CT) and biplanar radiography is described. As part of a two-step validation process the creation of such a model was first validated against a ground truth CT reconstruction of a plastinated cadaver. Secondly, biplanar radiographic images of one healthy and 12 adult spinal deformity subjects were obtained in two standing positions: upright and bent. Two subject-specific models for each of these subjects were then created to represent both standing positions. The result of inverse kinematics solutions, simulating the specific bending motion using the upright models, are compared with the models created in bent position, quantifying the marker-based spino-pelvic tracking accuracy. The workflow created spinal deformity models with mean accuracies between 0.71-1.95 mm and 1.25-2.27° for vertebral positions and orientations, respectively. In addition, the mean marker-based spino-pelvic tracking accuracies were between 0.9-1.8 mm and 2.9-5.6° for vertebral positions and rotations, respectively. This study presented the first validated biplanar radiography-based method to generate subject-specific spino-pelvic, rigid body models that allows the inclusion of subject-specific bone geometries, the personalization of the 3D weight-bearing spinal alignment with accuracy comparable to clinically used software for 3D reconstruction, and the localization of external markers in spinal deformity subjects. This work will allow new concepts of dynamic functionality evaluation of patients with spinal deformity.
Tijdschrift: Journal Of Biomechanics
ISSN: 0021-9290
Volume: 110
Jaar van publicatie:2020
BOF-keylabel:ja
IOF-keylabel:ja
BOF-publication weight:1
CSS-citation score:1
Authors from:Higher Education
Toegankelijkheid:Closed