< Terug naar vorige pagina

Publicatie

Performance study of a microfluidic reactor for cogeneration of chemicals and electricity

Tijdschriftbijdrage - Tijdschriftartikel

The chemical and electrochemical performance of a microfluidic reactor for the cogeneration of nitrobenzene derivatives and electricity has been analysed. Reactor operation has been tested using loads of 100 Ω and 1000 Ω, allowing an in-depth characterisation replicating the circumstances of actual chemical production. Conversion rates of up to 64% and power densities of up to 0.299 mW cm−2 have been attained. The main products obtained using this cogeneration co-laminar flow cell (CLFC) are aniline and nitrosobenzene. Nitrosobenzene is identified as a product generated by cogeneration while aniline is established to be an unwanted side-product at the anode due to oxidant crossover, which reduces the cogeneration efficiency. Reactor stability has been determined by monitoring of the anode, cathode and cell potentials. Self-poisoning of the anode reaction leads to loss in electrical performance. Due to its ability to self-regenerate, the power density shows an oscillating behaviour over time. Results in this paper reveal that the concept of a cogeneration microreactor is promising, although the anode reaction and the mass transfer in the reactor can still be optimised further for actual applications.
Tijdschrift: Chemical engineering research and design
ISSN: 0263-8762
Volume: 142
Pagina's: 336 - 345
Jaar van publicatie:2019
Trefwoorden:A1 Journal article
BOF-keylabel:ja
BOF-publication weight:1
CSS-citation score:1
Authors from:Higher Education
Toegankelijkheid:Open