< Terug naar vorige pagina

Publicatie

Investigation of fatigue crack initiation facets in Ti-6Al-4V using focused ion beam milling and electron backscatter diffraction

Tijdschriftbijdrage - Tijdschriftartikel

In the very high cycle fatigue regime, internal crack initiation can occur in Ti-6Al-4V because of the formation of facets, which are α grains that have fractured in a transcrystalline and planarmanner. Because this crack initiation phase occupies most of the fatigue life, it is essential to understand which mechanisms lead to facet formation. Fatigue tests have been performed on drawn and heat-treated Ti-6Al-4V wires, and the facets at internal crack initiation sites have been analysed in detail in terms of their appearance, their spatial orientation and their crystallographic orientation. The facets were not smooth, but showed surface markings at the nanoscale. In nearly all cases, these markings followed a linear pattern. One anomalous facet, in a sample with the largest grain size, contained a fan-shaped pattern. The facets were at relatively steep angles, mostly between 50° and 70°. Cross-sections of the fracture surfaces have been made by focused ion beam milling and were used to measure the crystallographic orientation of facets by electron backscatter diffraction. Most facet planes coincided with a prismatic lattice plane, and the linear markings were parallel to the prismatic slip direction, which is a strong indication that prismatic slip and slip band formation led to crack initiation. However, the anomalous facet had a near-basal orientation, which points to a possible cleavage mechanism. The cross-sections also exposed secondary cracks, which had formed on prismatic lattice planes, and in some cases early stage facet formation and short crack growth phenomena. The latter observations show that facets can extend through more than one grain, and that there is crack coalescence between facets. The fact that drawn wires have a specific crystallographic texture has led to a different facet formation behaviour compared to what has been suggested in the literature.
Tijdschrift: Journal of Microscopy
ISSN: 0022-2720
Issue: 1
Volume: 267
Pagina's: 57 - 69
Jaar van publicatie:2017
BOF-keylabel:ja
IOF-keylabel:ja
BOF-publication weight:1
CSS-citation score:1
Authors from:Higher Education
Toegankelijkheid:Closed