< Back to previous page

Publication

Evaluation of Haptic Feedback on Bimanually Teleoperated Laparoscopy for Endometriosis Surgery.

Journal Contribution - Journal Article

Robotic minimal invasive surgery is gaining acceptance in surgical care. In contrast with the appreciated 3D vision and enhanced dexterity, haptic feedback is not offered. For this reason robotics is not considered beneficial for delicate interventions such the endometriosis. Overall, haptic feedback remains debatable and yet unproven except for some simple scenarios such as Fundamentals of Laparoscopic Surgery exercises. OBJECTIVE: The present work investigates the benefits of haptic feedback on more complex surgical gestures, manipulating delicate tissue through coordination between multiple instruments. METHODS: A new training exercise, "Endometriosis Surgery Exercise" (ESE) has been devised approximating the setting for monocular robotic endometriosis treatment. A bimanual bilateral teleoperation setup was designed for laparoscopic laser surgery. Haptic guidance and haptic feedback are respectively offered to the operator. User experiments have been conducted to i) assess the validity of ESE and to ii) examine possible advantages of haptic technology during execution of bimanual surgery. RESULTS: i) Content and face validity of ESE was established by participating surgeons. Surgeons suggested ESE also as a means to train lasering skills, ii) interaction forces on endometriotic tissue were found to be significantly lower when a bilateral controller is used. Collisions between instruments and the environment were less frequent and so were situations marked as potentially dangerous. CONCLUSION: This study provides some promising results suggesting that haptics may offer a distinct advantage in complex robotic interventions were fragile tissue is manipulated. SIGNIFICANCE: Patients need to know whether it should be incorporated. Improved understanding of the value of haptics is important as current commercial surgical robots are widely used but do not offer haptics.
Journal: IEEE Transactions on Biomedical Engineering
ISSN: 0018-9294
Issue: 5
Volume: 66
Pages: 1207 - 1221
Publication year:2019
BOF-keylabel:yes
IOF-keylabel:yes
BOF-publication weight:1
CSS-citation score:1
Authors:International
Authors from:Higher Education
Accessibility:Open