< Back to previous page

Project

Dose-efficient fusion of imaging and analytical techniques in scanning transmission electron microscopy.

The aim of this project is to realize a major breakthrough in the quantitative analysis of imaging and analytical techniques in scanning transmission electron microscopy (STEM). Therefore, we will exploit the physics-based description of the fundamental processes of electron scattering and combine this with a thorough multivariate statistical analysis of the recorded signals. In this manner, we will be able to identify the chemical nature of all individual atoms in three dimensions (3D). So far, imaging and analytical signals have been analyzed separately in STEM. Although analytical techniques are in principle well suited because of their elemental specificity, they have a much lower signal to noise ratio as compared to imaging techniques. We foresee that our multivariate method, in which new physics-based models are incorporated to describe the electron-object interaction, enables us to achieve element-specific atom counting at a local scale and to determine even the ordering of the atoms along the viewing direction. Furthermore, our approach will be optimized to reach high elemental measurement precision for a minimum incoming electron dose. This novel dose-efficient quantitative methodology will clearly usher electron microscopy in a new era of 3D element-specific metrology at the atomic scale. This will exactly provide the input needed to understand the unique link between a material's structure and its properties in both materials and in life sciences.
Date:1 Jan 2018 →  31 Dec 2021
Keywords:ELECTRON MICROSCOPY
Disciplines:Multimedia processing, Biological system engineering, Signal processing
Project type:Collaboration project