< Back to previous page

Publication

Transcranial magnetic stimulation reveals dissociable mechanisms for global versus selective corticomotor suppression underlying the stopping of action

Journal Contribution - Journal Article

Stopping an initiated response is an essential function, investigated in many studies with go/no-go and stop-signal paradigms. These standard tests require rapid action cancellation. This appears to be achieved by a suppression mechanism that has "global" effects on corticomotor excitability (i.e., affecting task-irrelevant muscles). By contrast, stopping action in everyday life may require selectivity (i.e., targeting a specific response tendency without affecting concurrent action). We hypothesized that while standard stopping engages global suppression, behaviorally selective stopping engages a selective suppression mechanism. Accordingly, we measured corticomotor excitability of the task-irrelevant leg using transcranial magnetic stimulation while subjects stopped the hand. Experiment 1 showed that for standard (i.e., nonselective) stopping, the task-irrelevant leg was suppressed. Experiment 2 showed that for behaviorally selective stopping, there was no mean leg suppression. Experiment 3 directly compared behaviorally nonselective and selective stopping. Leg suppression occurred only in the behaviorally nonselective condition. These results argue that global and selective suppression mechanisms are dissociable. Participants may use a global suppression mechanism when speed is stressed; however, they may recruit a more selective suppression mechanism when selective stopping is behaviorally necessary and preparatory information is available. We predict that different fronto-basal-ganglia pathways underpin these different suppression mechanisms.
Journal: CEREBRAL CORTEX
ISSN: 1047-3211
Issue: 2
Volume: 22
Pages: 363 - 371
Accessibility:Closed