< Back to previous page


Real-time 100-GS/s sigma-delta modulator for all-digital radio-over-fiber transmission

Journal Contribution - Journal Article

All-digital radio-over-fiber (RoF) transmission has attracted a significant amount of interest in digital-centric systems or centralized networks because it greatly simplifies the front-end hardware by using digital processing. The sigma-delta modulator (SDM)-based all-digital RoF approach pushes the digital signal processing as far as possible into the transmit chain. We present a real-time 100-GS/s fourth-order single-bit SDM for all-digital RoF transmission in the high-frequency band without the aid of analog/optical up-conversion. This is the fastest sigma-delta modulator reported and this is also the first real-time demonstration of sigma-delta-modulated RoF in the frequency band above 24 GHz. 4.68 Gb/s (2.34 Gb/s) 64-QAM is transported over 10-km standard single-mode fiber in the C-band with 6.46% (4.73%) error vector magnitude and 3.13 Gb/s 256-QAM can be even received in an optical back-to-back configuration. The carrier frequency can be digitally tuned at run-time, covering a wide frequency range from 22.75 to 27.5 GHz. Besides, this high-speed sigma-delta modulator introduces less than 1 mu s latency in the transmit chain. Its all-digital nature enables network virtualization, making the transmitter compatible with different existing standards. The prominent performance corroborates the strong competitiveness of this SDM-based RoF approach in high-frequency RoF 5C communication.
Journal: Journal of Lightwave Technology
ISSN: 0733-8724
Issue: 2
Volume: 38
Pages: 386 - 393
Publication year:2020
Keywords:Computer science/information technology, Electrical & electronic engineering, Classical physics