< Back to previous page

Project

Innovative Medical Imaging for Neurological Disorders (iMIND).

Epilepsy is a frequently observed neurological disorder that is characterized by repeated epileptic seizures. These seizures are characterized by a sudden and unexpected change of the behavior and/or the consciousness of the patient as a result of excessive and uncontrolled electrical activity in a well-defined region in the cerebral cortex (the so-called epileptogenic zone). By placing electrodes using a standardized setup on the scalp surface, one can measure the electrical or magnetic fields generated by brain activity during an epileptic event. A recording of electrodes in function of time is called an electroencephalogram (EEG) or magnetencephalogram (MEG), respectively.EEG/MEG source analysis determines the origin of brain activity based on the EEG/MEG due to epileptic events and consists of two subproblems: First, by solving the forward problem one obtains the electrode potentials due to a given set of sources, which are characterized by the source parameters. Second, by solving the inverse problem the source parameters are estimated given a set of measured electrode potentials. These imaging techniques measure the generated brain activity with a high time resolution (milliseconds) but have a low spatial resolution.In the past decade, a vast number of medical imaging modalities have been used in the clinical practice. Magnetic Resonance Imaging (MRI), Computed Tomography (CT) and Diffusion Weighted MRI (DW-MRI) are techniques that reveal the anatomical structure of the brain. Functional imaging, such as Single Photon Emission Computed Tomography (SPECT) and functional MRI (fMRI), image changes in the blood flow. These techniques have a high spatial (approx. 1 mm for MRI, 7 mm for SPECT, 3 mm for fMRI) resolution, but a very low temporal resolution as the duration of the scan is in the order of minutes.Novel treatment options have emerged from the experimental field, which involve the stimulation of a specific brain region, deep brain stimulation (DBS), or vagal nerve, vagal nerve stimulation (VNS). However, the mechanism of action of these procedures is unknown and the efficacy of the treatment can be improved.Within the iMIND project we want to develop a software platform that can:1. Gather the necessary information for the determination of the origin of epileptic seizures and the quantification of the mechanism of action of novel neuromodulatory treatment.2. Coregistration of the different acquired images in order to visualize and analyze them in the same frame of reference. Furthermore we want to improve the accuracy of the EEG/MEG source analysis by incorporating anatomical and functional information obtained from medical imaging3. Visualize the images in a comprehensive and user-friendly way. We also want to visualize the time information, provided by the improved EEG/MEG source analysis procedure.4. Be used for the accurate determination of the epileptogenic zone. In this case we want to determine the added value of the software platform on a small population in the determination of the epileptic onset zone.5. Be used in an experimental setting by quantitatively measuring the effect of different parameters of novel neuromodulatory treatment (DBS and/or VNS). In this case, the added value is determined by using the software platform for comparing functional images obtained during stimulation of small animals and correlating them with anatomical images.
Date:1 Jan 2010 →  31 Dec 2011
Keywords:MEDICAL IMAGING, NEUROLOGICAL DISORDERS
Disciplines:Classical physics, Elementary particle and high energy physics, Other physical sciences, Biological system engineering, Biomaterials engineering, Biomechanical engineering, Medical biotechnology, Other (bio)medical engineering
Project type:Collaboration project