< Back to previous page

Publication

Mechanistic profiling of the cAMP-dependent steroidogenic pathway in the H295R endocrine disrupter screening system

Journal Contribution - Journal Article

Subtitle:new endpoints for toxicity testing
The need for implementation of effects on steroid synthesis and hormone processing in screening batteries of endocrine disruptive compounds is widely acknowledged. In this perspective, hormone profiling in the H295R adrenocortical cell system is extensively examined and recently OECD validated (TG 456) as a replacement of the minced testis assay. To further elucidate the complete mechanisms and endocrine responsiveness of this cell system, microarray-based gene expression profiling of the cAMP response pathway, one of the major pathways in steroidogenesis regulation, was examined in H295R cells. Next to the steroid synthesis pathway, a broader lipid metabolic pathway, including cholesterol uptake/biosynthesis, hormone metabolization and many hormone and nuclear receptors, are sensitive towards cAMP stimulation in this cell system. Moreover, these pathways were clearly dose and time responsive, indicating early regulation (10 h) of cholesterol uptake and mobilization genes and later expression (2448 h) of cholesterol biosynthesis and steroid synthesis. Transcription network analysis suggested several important transcription factors that could be involved in regulation of the steroid hormone pathway, of which HNF4α, a broader lipid metabolism related transcription factor, might indicate some new transcription regulation patterns in this cell line. Overall we can conclude that the time dependent gene expression patterns of the strongly coordinated cholesterol supply and steroidogenesis pathways in the H295R cell system seem to reflect well the in vivo ACTH/cAMP signalling cascade in adrenal cells. Moreover, the completeness of the steroidogenic related pathways in terms of gene expression sensitivity, indicates the H295R cell line as a promising cell line in omics-based endocrine disruption screening.
Journal: Toxicology letters
ISSN: 0378-4274
Volume: 208
Pages: 174 - 184
Publication year:2012
BOF-keylabel:yes
Authors from:Higher Education