< Back to previous page

Project

Microbial fluxes of greenhouse gases (CO2 and CH4) in karst ecosystems: comprehensive assessment and biogeochemical modelling (MIFLUKE) (MIFLUKE)

The assessment of carbon cycle in the Earth-climate system is one the highest challenge in science nowadays. It still remains some key knowledge gaps and uncertainties concerning the budgets of greenhouse gases (GHGs) at ecosystem scale and the key role of microbial communities. Karst ecosystems cover up to 25 % of the land surface and they are acting as rapid CH4 sink and as alternately CO2 source or sink. Pioneer results point to microbial action must be playing a crucial role in CO2 and CH4 uptake, fixation or production and maybe determining the strong variations of these major GHGs in karst ecosystems. MIFLUKE will elucidate, for the first time, the role of karst microbiota in the main GHGs -CO2 and CH4- content and fluxes in underground vadose atmospheres, as a key challenge to clarify the accurate effective contribution of karst ecosystems to the global carbon cycle. By applying an innovative and multidisciplinary combination of a broad suite of advanced tools and cutting-edge technologies from very different research areas -GHGs flux monitoring, isotopic geochemical tracing, biogeochemistry, metagenomics, etc.- a biogeochemical model of microbial processes will be developed. This project will combine the expertise of a multidisciplinary group of leading researchers on ecosystem functioning, GHGs and biogeochemistry modelling, with the extraordinary resources including analytical facilities and training support in PLECO (Univ. Antwerp, Belgium).
Date:1 Sep 2019 →  31 Aug 2021
Keywords:GREENHOUSE GAS, BIOGEOCHEMISTRY, CARBON CYCLE
Disciplines:Carbon sequestration science