< Back to previous page

Publication

Corynebacterium diphtheriae methionine sulfoxide reductase A exploits a unique mycothiol redox relay mechanism

Journal Contribution - Journal Article

Methionine sulfoxide reductases are conserved enzymes that reduce oxidized methionines in proteins, and play a pivotal role in cellular redox signaling. We have unraveled the redox relay mechanisms of methionine sulfoxide reductase A of the pathogen C. diphtheria (Cd-MsrA), and showed that this enzyme is coupled to two independent redox relay pathways. Steady-state kinetics combined with mass spectrometry of Cd-MsrA mutants give a view of the essential cysteine residues for catalysis. Cd-MsrA combines a nucleophilic cysteine sulfenylation reaction with an intramolecular disulfide bond cascade linked to the thioredoxin pathway. Within this cascade, the oxidative equivalents are transferred to the surface of the protein, while releasing the reduced substrate. Alternatively, MsrA catalyzes methionine sulfoxide reduction linked to the mycothiol/mycoredoxin-1 pathway. After the nucleophilic cysteine sulfenylation reaction, MsrA forms a mixed disulfide with mycothiol, which is transferred via a thiol disulfide relay mechanism to a second cysteine for reduction by mycoredoxin-1. With X-ray crystallography, we visualize two essential intermediates of the thioredoxin relay mechanism, and a cacodylate molecule mimicking the substrate interactions in the active site. The interplay of both redox pathways in redox signaling regulation forms the basis for further research into the oxidative stress response of this pathogen.

Journal: J. Biol. Chem.
ISSN: 0021-9258
Volume: 290
Pages: 11365-11375
Publication year:2015
  • PubMed Central Id: PMC4416841
  • Scopus Id: 84928780298
  • WoS Id: 000353719400013
  • ORCID: /0000-0003-0114-9379/work/105289540
CSS-citation score:1