< Back to previous page

Publication

A Hydroxypyrone-Based Inhibitor of Metalloproteinase-12 Displays Neuroprotective Properties in Both Status Epilepticus and Optic Nerve Crush Animal Models

Journal Contribution - Journal Article

Recently, we showed that matrix metalloproteinase-12 (MMP-12) is highly expressed in microglia and myeloid infiltrates, which are presumably involved in blood⁻brain barrier (BBB) leakage and subsequent neuronal cell death that follows status epilepticus (SE). Here, we assessed the effects of a hydroxypyrone-based inhibitor selective for MMP-12 in the pilocarpine-induced SE rat model to determine hippocampal cell survival. In the hippocampus of rats treated with pilocarpine, intra-hippocampal injections of the MMP-12 inhibitor protected Cornu Ammonis 3 (CA3) and hilus of dentate gyrus neurons against cell death and limited the development of the ischemic-like lesion that typically develops in the CA3 stratum lacunosum-moleculare of the hippocampus. Furthermore, we showed that MMP-12 inhibition limited immunoglobulin G and albumin extravasation after SE, suggesting a reduction in BBB leakage. Finally, to rule out any possible involvement of seizure modulation in the neuroprotective effects of MMP-12 inhibition, neuroprotection was also observed in the retina of treated animals after optic nerve crush. Overall, these results support the hypothesis that MMP-12 inhibition can directly counteract neuronal cell death and that the specific hydroxypyrone-based inhibitor used in this study could be a potential therapeutic agent against neurological diseases/disorders characterized by an important inflammatory response and/or neuronal cell loss.
Journal: International Journal of Molecular Sciences
ISSN: 1422-0067
Issue: 8
Volume: 19
Publication year:2018
BOF-keylabel:yes
IOF-keylabel:yes
BOF-publication weight:1
CSS-citation score:1
Authors:International
Authors from:Higher Education
Accessibility:Open