< Back to previous page

Publication

Mixed-integer linear programming approach for global discrete sizing optimization of frame structures

Journal Contribution - Journal Article

© 2017, Springer-Verlag GmbH Germany. This paper focuses on discrete sizing optimization of frame structures using commercial profile catalogs. The optimization problem is formulated as a mixed-integer linear programming (MILP) problem by including the equations of structural analysis as constraints. The internal forces of the members are taken as continuous state variables. Binary variables are used for choosing the member profiles from a catalog. Both the displacement and stress constraints are formulated such that for each member limit values can be imposed at predefined locations along the member. A valuable feature of the formulation, lacking in most contemporary approaches, is that global optimality of the solution is guaranteed by solving the MILP using branch-and-bound techniques. The method is applied to three design problems: a portal frame, a two-story frame with three load cases and a multiple-bay multiple-story frame. Performance profiles are determined to compare the MILP reformulation method with a genetic algorithm.
Journal: Structural and Multidisciplinary Optimization
ISSN: 1615-147X
Issue: 2
Volume: 57
Pages: 579 - 593
Publication year:2018
BOF-keylabel:yes
IOF-keylabel:yes
BOF-publication weight:2
CSS-citation score:1
Authors:International
Authors from:Higher Education
Accessibility:Open