< Back to previous page

Project

Research Grant Human Frontier Science Program.

Mental time travel (MTT) is the ability to decouple from the present and simulate experiences from the past and into the future. In humans, MTT is fundamental for solving problems by anticipating results of actions based on past experiences. The contentious question whether non-human animals possess MTT abilities can be answered by carefully crafting species-specific tasks to investigate how animals make use of space and time when solving problems. Dolphins, bats and parrots are suitable candidates for animals that may possess MTT abilities. They have excellent spatial orientation skills and live in fission-fusion societies where they track, cooperate and compete with conspecifics. Having MTT abilities would make it possible for them to e.g., collect memories of foraging and roosting sites across changing seasons and contexts, and in connection with particular conspecifics and heterospecifics. Animals could use such information for their future-oriented decision-making, e.g., of which individuals to join for the next foraging trip. We hypothesize that marine mammals, bats and parrots will exhibit evidence of MTT but on different time scales, depending on their ecology and physiology. We propose to study how our phylogenetically diverse model groups travel mentally through space-time, and to what extent they exchange temporal information with conspecifics to solve naturalistic tasks. We explore all core components of mental time travel: Time perception, episodic memory and future planning. We compare MTT in animals that operate in 3D space, both under water and in air, employing naturalistic, ecologically valid and species-specific tasks. Our goal is to use similar approaches and procedures across our model species, so that we can compare and contrast the cognitive processes that lie at the core of MTT. Discoveries from biological systems are implemented in robotic platforms that permit systematic manipulation of independent variables and hypothesis testing of MTT mechanisms. Results from robotic experiments will be used to further refine animal experiments.
Date:1 Dec 2022 →  30 Nov 2023
Keywords:EXPERIMENTAL STUDY, MODEL SYSTEMS
Disciplines:Behavioural biology, Behavioural ecology, Automation, feedback control and robotics
Project type:Collaboration project