Confounder selection strategies targeting stable treatment effect estimators Universiteit Gent
Inferring the causal effect of a treatment on an outcome in an observational study requires adjusting for observed baseline confounders to avoid bias. However, adjusting for all observed baseline covariates, when only a subset are confounders of the effect of interest, is known to yield potentially inefficient and unstable estimators of the treatment effect. Furthermore, it raises the risk of finite-sample bias and bias due to model ...