Titel Promotor Affiliaties "Korte inhoud" "Virtuele gebouwakoestiek: een robuust en efficiënt analyse- en optimalisatiekader voor reductie van geluidsoverdracht" "Edwin Reynders" Bouwmechanica "Achieving a sufficient sound insulation of buildings is a complex problem since multiple transmission paths are important, uncertainties can have a large effect, and acoustic performance requirements often conflict with structural and thermal requirements. Furthermore, accurate vibro-acoustic modelling across the entire building acoustics frequency range presently requires a huge computational effort. As a result, the acoustic development of building systems is usually based on general design rules, insufficiently accurate prediction models and many experimental prototype tests. Such development is costly and time consuming, and leads to suboptimal designs. This project therefore aims to develop an efficient yet sufficiently accurate prediction framework for the acoustic design of building systems which takes all uncertainties into account and which opens the way for design optimization. Four fundamental breakthroughs are required. First, a new approach to high-frequency subsystem modelling will overcome the limitations of the current statistical energy analysis paradigm and handle a high degree of geometric and material complexity. Second, a modelling framework for built-up systems will be developed, which incorporates different component model types and which switches between them as the frequency increases. The third development consists of quantifying the combined effect of all uncertain parameters on the overall sound insulation performance in a logically consistent and computationally efficient way. Finally, a robust optimization approach that spans the entire building acoustics frequency range and that accounts for all relevant non-acoustic performance criteria as well will be developed. Each development will be complemented by showcase applications in building acoustics, yet the fundamental nature of the developments make that they will have a profound impact in all disciplines where the study and/or control of mechanical wave propagation are important." "Slimme mitigatie van door flow geïnduceerde akoestische straling en transmissie voor minder vliegtuigen, oppervlaktevervoer, werkplekken en windenergiegeluid" "Wim Desmet" "Mecha(tro)nische SysteemDynamica (LMSD)" "A step change in our noise mitigation strategies is required in order to meet the environmental targets set for a number of sectors of activity affecting people through noise exposure. Besides being a hindrance to our daily life and subject to regulations, noise emission is also a competitive issue in today’s global market. To address these issues, new technologies have been emerging recently, based on radically new concepts for flow and acoustic control, such as micro-electro-mechanical devices (MEMs), meta-materials, porous treatment of airframe surfaces, airfoil leading-edge or trailing-edge serrations, micro-jets, plasma actuation, … Some of these new ideas appear nowadays promising, but it now appears to this consortium that the development and maturation of novel noise reduction technologies is hindered by three main factors. The first factor is an insufficient understanding of the physical mechanisms responsible for the alteration of the flow or acoustic fields. In absence of a phenomenological understanding, modelling and optimization can hardly be successful. Secondly, tight constraints (safety, robustness, weight, maintainability, etc.) are imposed to any novel noise mitigation strategy trying to make its way to the full-scale industrial application. Thirdly, there is an insufficient knowledge about the possibilities that are nowadays offered by new materials and new manufacturing processes. With this project, we intend to setup a research and training platform, focused on innovative flow and noise control approaches, addressing the above shortcomings. It has the following objectives: i) fostering a training-through-research network of young researchers, who will investigate promising emerging technologies and will be trained with the inter-disciplinary skills required in an innovation process, and ii) bringing in a coordinated research environment industrial stakeholders from the aeronautical, automotive, wind turbine and cooling/ventilation sectors."