Titel Deelnemers "Korte inhoud" "Our Scientific Journey through the Ups and Downs of Blood Glucose Control in the ICU." "Greet Van den Berghe, Ilse Vanhorebeek, Lies Langouche, Jan Gunst" "This article tells the story of our long search for the answer to one question: Is stress hyperglycemia in critically ill patients adaptive or maladaptive? Our earlier work had suggested the lack of hepatic insulin effect and hyperglycemia as jointly predicting poor outcome. Therefore, we hypothesized that insulin infusion to reach normoglycemia, tight glucose control, improves outcome. In three randomized controlled trials (RCTs), we found morbidity and mortality benefit with tight glucose control. Moving from the bed to the bench, we attributed benefits to the prevention of glucose toxicity in cells taking up glucose in an insulin-independent, glucose concentration gradient-dependent manner, counteracted rather than synergized by insulin. Several subsequent RCTs did not confirm benefit, and the large Normoglycemia in Intensive Care Evaluation-Survival Using Glucose Algorithm Regulation, or ""NICE-SUGAR,"" trial found increased mortality with tight glucose control associated with severe hypoglycemia. Our subsequent clinical and mechanistic research revealed that early use of parenteral nutrition, the context of our initial RCTs, had been a confounder. Early parenteral nutrition (early-PN) aggravated hyperglycemia, suppressed vital cell damage removal, and hampered recovery. Therefore, in our next and largest ""TGC-fast"" RCT, we retested our hypothesis, without the use of early-PN and with a computer algorithm for tight glucose control that avoided severe hypoglycemia. In this trial, tight glucose control prevented kidney and liver damage, though with much smaller effect sizes than in our initial RCTs without affecting mortality. Our quest ends with the strong recommendation to omit early-PN for patients in the ICU, as this reduces need of blood glucose control and allows cellular housekeeping systems to play evolutionary selected roles in the recovery process. Once again, less is more in critical care." "Plasma and red blood cell concentrations of zinc, copper, selenium and magnesium in the first week of paediatric critical illness" "Ilse Vanhorebeek, Michael Casaer, Greet Van den Berghe" "BACKGROUND & AIMS: Critically ill children are at risk of micronutrient deficiencies, which might lead to poor clinical outcomes. However, the interpretation of micronutrient concentrations in plasma is complicated due to age-dependent and critical illness-dependent changes. Certain red blood cell (RBC) concentrations might reflect the overall body status more reliably than plasma levels in the presence of systemic inflammatory response. This study longitudinally examined micronutrient concentrations in both plasma and RBC in critically ill children. METHODS: This secondary analysis of the PEPaNIC RCT investigated the impact of early versus late initiation of parenteral macronutrient supplementation in critically ill children. All children received micronutrients when EN was insufficient (" "Abnormal DNA methylation within HPA-axis genes years after paediatric critical illness" "Ilse Vanhorebeek, Greet Van den Berghe" "BACKGROUND: Critically ill children suffer from impaired physical/neurocognitive development 2 years later. Glucocorticoid treatment alters DNA methylation within the hypothalamus-pituitary-adrenal (HPA) axis which may impair normal brain development, cognition and behaviour. We tested the hypothesis that paediatric-intensive-care-unit (PICU) patients, sex- and age-dependently, show long-term abnormal DNA methylation within the HPA-axis layers, possibly aggravated by glucocorticoid treatment in the PICU, which may contribute to the long-term developmental impairments. RESULTS: In a pre-planned secondary analysis of the multicentre PEPaNIC-RCT and its 2-year follow-up, we identified differentially methylated positions and differentially methylated regions within HPA-axis genes in buccal mucosa DNA from 818 former PICU patients 2 years after PICU admission (n = 608 no glucocorticoid treatment; n = 210 glucocorticoid treatment) versus 392 healthy children and assessed interaction with sex and age, role of glucocorticoid treatment in the PICU and associations with long-term developmental impairments. Adjusting for technical variation and baseline risk factors and correcting for multiple testing (false discovery rate " "Early weight measures and long-term neuropsychological outcome of critically ill neonates and infants: a secondary analysis of the PEPaNIC trial" "Ilse Vanhorebeek, Greet Van den Berghe" "UNLABELLED: Neonates and infants surviving critical illness show impaired growth during critical illness and are at risk for later neuropsychological impairments. Early identification of individuals most at risk is needed to provide tailored long-term follow-up and care. The research question is whether early growth during hospitalization is associated with growth and neuropsychological outcomes in neonates and infants after pediatric intensive care unit admission (PICU). This is a secondary analysis of the PEPaNIC trial. Weight measurements upon PICU admission, at PICU discharge, at hospital discharge, at 2- and 4-year follow-up, and of different subgroups were compared using (paired) t-tests. Multiple linear regression analyses were performed to investigate the association between early growth in weight measures and neuropsychological outcomes at 4-year follow-up. One hundred twenty-one infants were included, and median age upon admission was 21 days. Growth in weight per week was less than the age-appropriate norm, resulting in a decrease in weight-for-age Z-score during hospitalization. Weight is normalized at 2- and 4-year follow-up. Weight gain in kilograms per week and change in weight Z-score were not associated with neurodevelopmental outcome measures at 4-year follow-up. Lower weight-for-age Z-score at PICU admission and at hospital discharge was associated only with lower weight and height Z-scores at 4-year follow-up. CONCLUSION: Growth in weight during hospital stay of young survivors of critical illness is impaired. Worse early growth in weight is associated with lower weight and height but not with neuropsychological outcomes at 4-year follow-up. WHAT IS KNOWN: • Critically ill neonates and infants show impaired early growth during admission and are at risk for later neuropsychological impairments. • Unraveling the association between early growth and later neuropsychological impairments is crucial since the first year of life is critical for brain development. WHAT IS NEW: • Critically ill neonates and infants had age appropriate weight measures at 4-year follow-up. • Poor growth in weight during hospital stay was not associated with poorer cognitive, emotional, or behavioral functioning four years after critical illness." "Assessment of aberrant DNA methylation two years after paediatric critical illness: a pre-planned secondary analysis of the international PEPaNIC trial" "Grégoire Coppens, Ilse Vanhorebeek, Greet Van den Berghe" "Critically ill children requiring intensive care suffer from impaired physical/neurocognitive development 2 y later, partially preventable by omitting early use of parenteral nutrition (early-PN) in the paediatric intensive-care-unit (PICU). Altered methylation of DNA from peripheral blood during PICU-stay provided a molecular basis hereof. Whether DNA-methylation of former PICU patients, assessed 2 y after critical illness, is different from that of healthy children remained unknown. In a pre-planned secondary analysis of the PEPaNIC-RCT (clinicaltrials.gov-NCT01536275) 2-year follow-up, we assessed buccal-mucosal DNA-methylation (Infinium-HumanMethylation-EPIC-BeadChip) of former PICU-patients (N = 406 early-PN; N = 414 late-PN) and matched healthy children (N = 392). CpG-sites differentially methylated between groups were identified with multivariable linear regression and differentially methylated DNA-regions via clustering of differentially methylated CpG-sites using kernel-estimates. Analyses were adjusted for technical variation and baseline risk factors, and corrected for multiple testing (false-discovery-rate" "Tight Blood-Glucose Control without Early Parenteral Nutrition in the ICU. Reply." "Jan Gunst, Greet Van den Berghe" "Gastrointestinal biomarkers and their association with feeding in the first five days of pediatric critical illness." "Ilse Vanhorebeek, Jan Gunst, Michael Casaer, Greet Van den Berghe" "OBJECTIVES: Predicting the patients' tolerance to enteral nutrition (EN) would help clinicians optimize individual nutritional intake. This study investigated the course of several gastrointestinal (GI) biomarkers and their association with EN advancement (ENA) longitudinally during pediatric intensive care unit (PICU) admission. METHODS: This is a secondary analysis of the PEPaNIC RCT. EN was started early and increased gradually. The cholecystokinin (CCK), leptin, glucagon, intestinal fatty acid-binding protein 2 (I-FABP2), and citrulline plasma concentrations were measured upon PICU admission, day three and day five. ENA was defined as kcal EN provided as % of predicted resting energy expenditure (pREE). The course of the biomarkers and ENA was examined in patients with samples on all time points using Friedman and Wilcoxon signed-rank tests. The association of ENA with the biomarkers was examined using a two-part mixed-effects model with data of the complete population, adjusted for possible confounders. RESULTS: For 172 patients, median age 8.6 years (first quartile (Q1); third quartile (Q3): 4.2; 13.4), samples were available, of which 55 had samples on all time points. The median ENA was 0 (0; 0) on admission, 14.5 (0.0; 43.8) on day 3 and 28.0 (7.6; 94.8) on day 5. During PICU stay, CCK and I-FABP2 concentrations decreased significantly, whereas glucagon concentrations increased significantly, and leptin and citrulline remained stable. None of the biomarkers was longitudinally associated with ENA. CONCLUSIONS: Based on the current evidence, CCK, leptin, glucagon, I-FABP2, and citrulline appear to have no added value in predicting ENA in the first five days of pediatric critical illness." "Impact of critical illness on cholesterol and fatty acids: insights into pathophysiology and therapeutic targets" "Lauren De Bruyn, Lies Langouche" "Critical illness is characterized by a hypercatabolic response encompassing endocrine and metabolic alterations. Not only the uptake, synthesis and metabolism of glucose and amino acids is majorly affected, but also the homeostasis of lipids and cholesterol is altered during acute and prolonged critical illness. Patients who suffer from critically ill conditions such as sepsis, major trauma, surgery or burn wounds display an immediate and sustained reduction in low plasma LDL-, HDL- and total cholesterol concentrations, together with a, less pronounced, increase in plasma free fatty acids. The severity of these alterations is associated with severity of illness, but the underlying pathophysiological mechanisms are multifactorial and only partly clarified. This narrative review aims to provide an overview of the current knowledge of how lipid and cholesterol uptake, synthesis and metabolism is affected during critical illness. Reduced nutritional uptake, increased scavenging of lipoproteins as well as an increased conversion to cortisol or other cholesterol-derived metabolites might all play a role in the decrease in plasma cholesterol. The acute stress response to critical illness creates a lipolytic cocktail, which might explain the increase in plasma free fatty acids, although reduced uptake and oxidation, but also increased lipogenesis, especially in prolonged critical illness, will also affect the circulating levels. Whether a disturbed lipid homeostasis warrants intervention or should primarily be interpreted as a signal of severity of illness requires further research." "The Hypothalamus-pituitary-adrenocortical Response to Critical Illness: A Concept in Need of Revision" "Lies Langouche, Jan Gunst, Greet Van den Berghe" "Based on insights obtained during the past decade, the classical concept of an activated hypothalamus-pituitary-adrenocortical axis in response to critical illness is in need of revision. After a brief central hypothalamus-pituitary-adrenocortical axis activation, the vital maintenance of increased systemic cortisol availability and action in response to critical illness is predominantly driven by peripheral adaptations rather than by an ongoing centrally activated several-fold increased production and secretion of cortisol. Besides the known reduction of cortisol-binding proteins that increases free cortisol, these peripheral responses comprise suppressed cortisol metabolism in liver and kidney, prolonging cortisol half-life, and local alterations in expression of 11βHSD1, glucocorticoid receptor-α (GRα), and FK506 binding protein 5 (FKBP51) that appear to titrate increased GRα action in vital organs and tissues while reducing GRα action in neutrophils, possibly preventing immune-suppressive off-target effects of increased systemic cortisol availability. Peripherally increased cortisol exerts negative feed-back inhibition at the pituitary level impairing processing of pro-opiomelanocortin into ACTH, thereby reducing ACTH-driven cortisol secretion, whereas ongoing central activation results in increased circulating pro-opiomelanocortin. These alterations seem adaptive and beneficial for the host in the short term. However, as a consequence, patients with prolonged critical illness who require intensive care for weeks or longer may develop a form of central adrenal insufficiency. The new findings supersede earlier concepts such as ""relative,"" as opposed to ""absolute,"" adrenal insufficiency and generalized systemic glucocorticoid resistance in the critically ill. The findings also question the scientific basis for broad implementation of stress dose hydrocortisone treatment of patients suffering from acute septic shock solely based on assumption of cortisol insufficiency." "Abnormal DNA methylation within genes of the steroidogenesis pathway two years after paediatric critical illness and association with stunted growth in height further in time" "Ilse Vanhorebeek, Grégoire Coppens, Greet Van den Berghe" "BACKGROUND: Former critically ill children show an epigenetic age deceleration 2 years after paediatric intensive care unit (PICU) admission as compared with normally developing healthy children, with stunted growth in height 2 years further in time as physical correlate. This was particularly pronounced in children who were 6 years or older at the time of critical illness. As this age roughly corresponds to the onset of adrenarche and further pubertal development, a relation with altered activation of endocrine pathways is plausible. We hypothesised that children who have been admitted to the PICU, sex- and age-dependently show long-term abnormal DNA methylation within genes involved in steroid hormone synthesis or steroid sulphation/desulphation, possibly aggravated by in-PICU glucocorticoid treatment, which may contribute to stunted growth in height further in time after critical illness. RESULTS: In this preplanned secondary analysis of the multicentre PEPaNIC-RCT and its follow-up, we compared the methylation status of genes involved in the biosynthesis of steroid hormones (aldosterone, cortisol and sex hormones) and steroid sulphation/desulphation in buccal mucosa DNA (Infinium HumanMethylation EPIC BeadChip) from former PICU patients at 2-year follow-up (n = 818) and healthy children with comparable sex and age (n = 392). Adjusting for technical variation and baseline risk factors and corrected for multiple testing (false discovery rate "