< Terug naar vorige pagina


Synthetic polypeptide crotamine: characterization as a myotoxin and as a target of combinatorial peptides

Tijdschriftbijdrage - Tijdschriftartikel

Crotamine is a rattlesnake-derived toxin that causes fast-twitch muscle paralysis. As a cell-penetrating polypeptide, crotamine has been investigated as an experimental anti-cancer and immunotherapeutic agent. We hypothesized that molecules targeting crotamine could be designed to study its function and intervene in its adverse activities. Here, we characterize synthetic crotamine and show that, like the venom-purified toxin, it induces hindlimb muscle paralysis by affecting muscle contraction and inhibits KCNA3 (Kv1.3) channels. Synthetic crotamine, labeled with a fluorophore, displayed cell penetration, subcellular myofiber distribution, ability to induce myonecrosis, and bind to DNA and heparin. Here, we used this functionally validated synthetic polypeptide to screen a combinatorial phage display library for crotamine-binding cyclic peptides. Selection for tryptophan-rich peptides was observed, binding of which to crotamine was confirmed by ELISA and gel shift assays. One of the peptides (CVWSFWGMYC), synthesized chemically, was shown to bind both synthetic and natural crotamine and to block crotamine-DNA binding. In summary, our study establishes a functional synthetic substitute to the venom-derived toxin and identifies peptides that could further be developed as probes to target crotamine. KEY MESSAGES: Synthetic crotamine was characterized as a functional substitute for venom-derived crotamine based on myotoxic effects. A combinatorial peptide library was screened for crotamine-binding peptides. Tryptophan-rich peptides were shown to bind to crotamine and interfere with its DNA binding. Crotamine myofiber distribution and affinity for tryptophan-rich peptides provide insights on its mechanism of action.
Tijdschrift: Journal of Molecular Medicine
ISSN: 0946-2716
Issue: 1
Volume: 100
Pagina's: 65 - 76
Aantal pagina's: 12
Jaar van publicatie:2021