< Terug naar vorige pagina

Publicatie

Spin communication over 30 μm long channels of chemical vapor deposited graphene on SiO2

Tijdschriftbijdrage - Tijdschriftartikel

© 2019 IOP Publishing Ltd. We demonstrate a high-yield fabrication of non-local spin valve devices with room-temperature spin lifetimes of up to 3 ns and spin relaxation lengths as long as 9 μm in platinum-based chemical vapor deposition (Pt-CVD) synthesized single-layer graphene on SiO 2 /Si substrates. The spin-lifetime systematically presents a marked minimum at the charge neutrality point, as typically observed in pristine exfoliated graphene. However, by studying the carrier density dependence beyond n ∼ 5 × 10 12 cm -2 , via electrostatic gating, it is found that the spin lifetime reaches a maximum and then starts decreasing, a behavior that is reminiscent of that predicted when the spin-relaxation is driven by spin-orbit interaction. The spin lifetimes and relaxation lengths compare well with state-of-the-art results using exfoliated graphene on SiO 2 /Si, being a factor two-to-three larger than the best values reported at room temperature using the same substrate. As a result, the spin signal can be readily measured across 30 μm long graphene channels. These observations indicate that Pt-CVD graphene is a promising material for large-scale spin-based logic-in-memory applications.
Tijdschrift: 2D Materials
ISSN: 2053-1583
Issue: 3
Volume: 6
Jaar van publicatie:2019
BOF-keylabel:ja
IOF-keylabel:ja
BOF-publication weight:2
CSS-citation score:2
Auteurs:International
Authors from:Government, Higher Education