< Terug naar vorige pagina

Publicatie

Exploring the potential of transfer learning in extrapolating accelerated corrosion test data for long-term atmospheric corrosion forecasting

Tijdschriftbijdrage - Tijdschriftartikel

This study utilizes transfer learning (TL) to enhance long-term atmospheric corrosion predictions. Using a Fe/Cu galvanic-type sensor, we gathered data in a controlled SAE J2334 salt spray setting and transferred this to an uncontrolled outdoor environment. Among TL methods tested, freezing the initial layer and fine-tuning others at a lower rate was most effective. The approach excelled at forecasting outdoor corrosion behaviour using a limited dataset. This approach could provide a solution to extrapolate results from controlled corrosion tests to unpredictable outdoor conditions and addressing data scarcity in machine learning modelling in the context of atmospheric corrosion.

Tijdschrift: Corros Sci
ISSN: 0010-938X
Volume: 225
Jaar van publicatie:2023
Trefwoorden:Atmospheric corrosion, Carbon steel, Weight loss, Materiaalkunde
  • ORCID: /0000-0002-9126-257X/work/170349011
  • ORCID: /0000-0002-7106-7603/work/149161629
  • Scopus Id: 85175208853
  • DOI: https://doi.org/10.1016/j.corsci.2023.111619
  • ORCID: /0000-0001-7237-8617/work/149157738
  • WoS Id: 001107012300001
Toegankelijkheid:Open