< Terug naar vorige pagina

Publicatie

CRYSTALLINITY PREDICTION OF SHORT CARBON FIBRE REINFORCED POLYAMIDE 6 COMPOSITES MANUFACTURED BY FUSED FILAMENT FABRICATION

Boekbijdrage - Boekhoofdstuk Conferentiebijdrage

Polymer additive manufacturing has transformed itself from a technology that is mainly focused on rapid prototyping to a widely received manufacturing technique for highly customised products. In fused filament fabrication (FFF), due to the fast heating and cooling of the polymer, the printed part's crystallinity and mechanical properties are inevitably affected. This research proposes a numerical approach to predict the final crystallinity for FFF printed polyamide 6/short carbon fibre composite. To do so, samples were built with the FFF technique with their temperature history recorded by infrared camera measurements. Differential scanning calorimetry (DSC) was conducted on the FFF filament to calibrate the numerical model. Temperature history was used as input for the model and the printed part’s final crystallinity is predicted. Tensile tests were carried out to examine the influence of crystallinity on the printed part’s mechanical performance.
Boek: CRYSTALLINITY PREDICTION OF SHORT CARBON FIBRE REINFORCED POLYAMIDE 6 COMPOSITES MANUFACTURED BY FUSED FILAMENT FABRICATION
Series: ECCM 2022 - Proceedings of the 20th European Conference on Composite Materials: Composites Meet Sustainability
Volume: 2
Pagina's: 399-406
Aantal pagina's: 8
Jaar van publicatie:2022
Trefwoorden:Fused filament fabrication, Short fibre reinforced thermoplastic, Crystallinity
Toegankelijkheid:Open