< Terug naar vorige pagina

Publicatie

1,3-propanediol production with Citrobacter werkmanii DSM17579 : effect of a dhaD knock-out

Tijdschriftbijdrage - Tijdschriftartikel

Background: 1,3-propanediol (PDO) is a substantially industrial metabolite used in the polymer industry. Although several natural PDO production hosts exist, e.g. Klebsiella sp., Citrobacter sp. and Clostridium sp., the PDO yield on glycerol is insufficient for an economically viable bio-process. Enhancing this yield via strain improvement can be achieved by disconnecting the production and growth pathways. In the case of PDO formation, this approach results in a microorganism metabolizing glycerol strictly for PDO production, while catabolizing a co-substrate for growth and maintenance. We applied this strategy to improve the PDO production with Citrobacter werkmanii DSM17579. Results: Genetic tools were developed and used to create Citrobacter werkmanii DSM17579 ∆dhaD in which dhaD, encoding for glycerol dehydrogenase, was deleted. Since this strain was unable to grow on glycerol anaerobically, both pathways were disconnected. The knock-out strain was perturbed with 13 different co-substrates for growth and maintenance. Glucose was the most promising, although a competition between NADH-consuming enzymes and 1,3-propanediol dehydrogenase emerged. Conclusion: Due to the deletion of dhaD in Citrobacter werkmanii DSM17579, the PDO production and growth pathway were split. As a consequence, the PDO yield on glycerol was improved 1,5 times, strengthening the idea that Citrobacter werkmanii DSM17579 could become an industrially interesting host for PDO production.
Tijdschrift: MICROBIAL CELL FACTORIES
ISSN: 1475-2859
Volume: 13
Jaar van publicatie:2014
BOF-keylabel:ja
IOF-keylabel:ja
BOF-publication weight:0.1
CSS-citation score:1
Auteurs:National
Authors from:Higher Education
Toegankelijkheid:Open