< Terug naar vorige pagina

Project

Integratie van systeemgenetische data in kanker voor de identificatie van causale mutaties en hun modus operandi

Tijdens het leven ondergaat ons DNA veel somatische aberraties waarvan slechts een klein deel effectief is
cellen in staat stellen om kanker te worden (stuurprogramma's). Methoden die afhankelijk zijn van een eerder interactienetwerk hebben
veelbelovende resultaten opgeleverd bij het identificeren van deze stuurprogramma's. Echter, huidige modellen hoog
de biologische realiteit oversimplificeren: de netwerken die de analyse aansturen, vangen de context van
de tumor. Ook omdat aberraties gemodelleerd zijn op genniveau, de mogelijkheid die anders is
mutaties in hetzelfde gen die dit gen op verschillende manieren beĆÆnvloeden, kunnen niet worden overwogen. Naar
Om deze problemen op te lossen, zullen we 1) een datagedreven benadering gebruiken om een U+200BU+200Bcontextspecifiek te construeren
probabilistisch netwerk en 2) ontwikkel een model dat het mogelijk maakt om de nog niet geƫxploiteerde functies te exploiteren
informatie om het effect van elke afzonderlijke aberratie over dit netwerk te traceren. Om dit te doen, de
methode neemt aan dat een aberratie van de bestuurder een respons veroorzaakt die zich voortplant via het netwerk.
De sleutel tot de methode is het gebruik van een afwijkend expressiefenotype (differentieel expressieniveau,
isovormschakelaars, ...) om deze voortplantingsreactie, de pad van invloed genaamd, te traceren en te kwantificeren
(POI). Gebaseerd op kenmerken van hun POI, wordt elke somatische aberratie gescoord om bestuurders te identificeren.
Analyse op Cohort-niveau maakt het vervolgens mogelijk stuurprogramma's te identificeren door te zoeken naar oververtegenwoordigd
POI's in hoog scorende aberraties. Toepassing van de methode op de ICGC PAWG-gegevens zal bijdragen aan een
systeemniveau inzicht in tumorigenese.

Datum:1 okt 2018  →  Heden
Trefwoorden:kanker
Disciplines:Morfologische wetenschappen, Oncologie