< Terug naar vorige pagina

Publicatie

Synaptic vesicle glycoprotein 2A is affected in the CNS of Huntington’s Disease mice and post-mortem human HD brain

Tijdschriftbijdrage - Tijdschriftartikel

Synaptic dysfunction is a primary mechanism underlying Huntington’s Disease (HD) progression. This study investigated changes in synaptic vesicle glycoprotein 2A (SV2A) density by means of 11C-UCB-J microPET imaging in the central nervous system (CNS) of HD mice. METHODS: Dynamic 11C-UCB-J microPET imaging was performed at clinically relevant disease stages (at 3, 7, 10, and 16 months, M) in the heterozygous knock-in Q175DN mouse model of HD and WT littermates (n = 16-18/genotype and time point). Cerebral 11C-UCB-J analyses were performed to assess genotypic differences during pre-symptomatic (3M) and symptomatic (7-16M) disease stages. 11C-UCB-J binding in the spinal cord was quantified at 16M. 3H-UCB-J autoradiography and SV2A immunofluorescence were performed post-mortem in mouse and human brain tissue. RESULTS: 11C-UCB-J binding was declined in symptomatic heterozygous mice compared to WT littermates in parallel with disease progression (7M: p<0.01, 16M: p<0.0001). Specific 11C-UCB-J binding was detectable in the spinal cord, with symptomatic heterozygous mice displaying a significant reduction (p<0.0001). 3H-UCB-J autoradiography and SV2A immunofluorescence corroborated the in vivo measurements demonstrating lowered SV2A in heterozygous mice (p<0.05). Finally, preliminary analysis of SV2A in post-mortem human brain suggested lower SV2A in HD gene carrier compared to nondemented control. CONCLUSION: 11C-UCB-J PET detects SV2A deficits during symptomatic disease in heterozygous mice in both brain and spinal cord, offering a novel marker of synaptic integrity widely distributed in CNS. Upon clinical application, 11C-UCB-J PET imaging yields promise for SV2A measurement in patients with HD during disease progression and following disease-modifying therapeutic strategies.
Tijdschrift: The Journal of nuclear medicine
ISSN: 0161-5505
Volume: 63
Pagina's: 942 - 947
Jaar van publicatie:2022
Trefwoorden:A1 Journal article
Toegankelijkheid:Open