< Terug naar vorige pagina

Publicatie

A machine learning approach to growth direction finding for automated planting of bulbous plants

Tijdschriftbijdrage - e-publicatie

In agricultural robotics, a unique challenge exists in the automated planting of bulbous plants: the estimation of the bulb’s growth direction. To date, no existing work addresses this challenge. Therefore, we propose the first robotic vision framework for the estimation of a plant bulb’s growth direction. The framework takes as input three x-ray images of the bulb and extracts shape, edge, and texture features from each image. These features are then fed into a machine learning regression algorithm in order to predict the 2D projection of the bulb’s growth direction. Using the x-ray system’s geometry, these 2D estimates are then mapped to the 3D world coordinate space, where a filtering on the estimate’s variance is used to determine whether the estimate is reliable. We applied our algorithm on 27,200 x-ray simulations from T. Apeldoorn bulbs on a standard desktop workstation. Results indicate that our machine learning framework is fast enough to meet industry standards (<0.1 seconds per bulb) while providing acceptable accuracy (e.g. error < 30° in 98.40% of cases using an artificial 3-layer neural network). The high success rates of the proposed framework indicate that it is worthwhile to proceed with the development and testing of a physical prototype of a robotic bulb planting system.
Tijdschrift: Scientific reports
ISSN: 2045-2322
Volume: 10
Pagina's: 1 - 11
Jaar van publicatie:2020
Trefwoorden:A1 Journal article
BOF-keylabel:ja
BOF-publication weight:2
CSS-citation score:1
Authors from:Higher Education
Toegankelijkheid:Open