< Terug naar vorige pagina

Publicatie

A first-principles study of stable few-layer penta-silicene

Tijdschriftbijdrage - Tijdschriftartikel

Recently penta-graphene was proposed as a stable two-dimensional carbon allotrope consisting of a single layer of interconnected carbon pentagons [Zhang et al., PNAS, 2015, 112, 2372]. Its silicon counterpart, penta-silicene, however, is not stable. In this work, we show that multilayers of penta-silicene form stable materials with semiconducting or metallic properties, depending on the stacking mode. We demonstrate their dynamic stability through their phonon spectrum and using molecular dynamics. A particular type of bilayer penta-silicene is found to have lower energy than all of the known hexagonal silicene bilayers and forms therefore the most stable bilayer silicon material predicted so far. The electronic and mechanical properties of these new silicon allotropes are studied in detail and their behavior under strain is investigated. We demonstrate that strain can be used to tune its band gap.
Tijdschrift: Physical chemistry, chemical physics
ISSN: 1463-9076
Volume: 18
Pagina's: 18486 - 18492
Jaar van publicatie:2016
Trefwoorden:A1 Journal article
BOF-keylabel:ja
BOF-publication weight:3
CSS-citation score:2
Authors from:Higher Education
Toegankelijkheid:Open