< Terug naar vorige pagina

Publicatie

Newborn telomere length predicts later life telomere length: Tracking telomere length from birth to child- and adulthood

Tijdschriftbijdrage - Tijdschriftartikel

Background: Telomere length (TL) is considered a biological marker of aging and may indicate age-related disease susceptibility. Adults and children show a fixed ranking and tracking of TL over time. However, the contribution of an individual's initial birth TL to their later life TL is unknown. We evaluated change and tracking of TL from birth to child-and adulthood. Methods: Telomere length at birth was measured using qPCR in two independent prospective birth cohorts. After a median follow-up period of 4 years in ENVIRONAGE (n = 273) we assessed leukocyte telomere length (LTL) and after 23 years in EFPTS (n = 164) buccal TL was assessed. Correlations and multivariable regression models were applied to study telomere tracking and determinants of TL change from birth onwards. Findings: In children, LTL at the age of 4 correlates with TL at the start of life both in cord blood (r = 0.71, P < 0.0001;) and placenta (r = 0.60, P < 0.0001) and was À11.2% and À33.1% shorter, respectively. In adult-hood, buccal TL at the age of 23 correlates with placental TL (r = 0.46, P < 0.0001) and was À35.9% shorter. TL attrition was higher in individuals with longer birth TL. However, based on TL ranking, individuals do not tend to change dramatically from TL rank after 4 or 23 years of follow-up. Finally, longer maternal TL associates with lower telomere attrition in the next generation. Interpretation: The high prediction of newborn TL for later life TL, and stable TL ranking from birth onwards underscores the importance of understanding the initial setting of newborn TL and its significance for later life.
Tijdschrift: EBioMedicine
ISSN: 2352-3964
Volume: 63
Jaar van publicatie:2021
Trefwoorden:Newborn telomere length, Telomere tracking, Telomere dynamics, Early life aging
Toegankelijkheid:Open