< Terug naar vorige pagina

Project

Krachtprognose JbyF: Krachtprognose voor 'Joining by Forming'

Het doel van dit project is om een snelle en betrouwbare prognose mogelijk te maken van de mechanische sterkte van clinchverbindingen en rivetten (Self-Piercing Rivet, SPR) op basis van geometrische eigenschappen van de verbindingen en basismateriaaleigenschappen van de te verbinden materialen via data-gebaseerde algoritmen. Leden van de doelgroep hebben direct of indirect te maken met de ontwikkeling en/of implementatie van innovatieve joining by forming technologie. Vooreerst zijn er de fabrikanten en toeleveranciers van mechanische verbindingstechnologie die  voortdurend in interactie treden met de maakindustrie. Deze sector neemt steeds vaker -in eigen beheer of via dienstverleners- hun toevlucht tot numerieke simulaties. Dit impliceert dat dienstverleners van numerieke simulaties en geavanceerde materiaalidentificatie ook deel uitmaken van het ontwikkelingstraject. Dit project beoogt de creatie van een digitaal ecosysteem ten behoeve van alle belangrijke spelers in de innovatieketen van mechanische verbindingstechnologie ten einde de mogelijkheden van machine learning te verkennen Het leeuwendeel van de gebruikersgroep is echter KMO en heeft niet de resources om dit in eigen beheer te doen. Dit project heeft dan ook de ambitie om via intense samenwerking en een duidelijk gedefinieerd pilootproject i)de competitie level m.b.t. machine learning in verbindingsontwerp van 30 Vlaamse KMO's te verhogen en te valoriseren in een digitaal ecosysteem, ii)100 Vlaamse bedrijven kennis te laten maken met de mogelijkheden van machine learning in mechanisch ontwerp.

Datum:1 apr 2020 →  31 mrt 2022
Trefwoorden:reliable prognosis, clinched connections, Self-Piercing Rivet, mechanical connection technology, machine learning, digital ecosystem
Disciplines:Machine learning en besluitvorming, Productieprocessen, -methoden en -technologieën
Resultaten:

Currently the design of mechanical joining processes like clinching and self-pierce riveting is hampered by a costly and complex experimental test campaign. Such approach is required to determine the most optimal process parameters such as the tool geometry and the punch stroke. A joint configuration is then iteratively varied based on experience until a suitable joint contour and strength is achieved. Fortunately, the latter process is nowadays highly supported by numerical simulations enabling to optimize the process parameters in a virtual environment. There is no doubt that these numerical simulations mitigate the burden of the experimental trial-and-error phase for optimizing the joining process. However, besides the joining process, the mechanical behaviour of the joint should also match the functional requirements of the mechanical design at hand. To this end, mechanical experiments are conducted to determine the mechanical strength of the joint under different loading conditions. In structural applications, these experiments are of crucial importance, yet increase the overall design cycle of the joint. A reliable estimation of the joint strength is crucial in an early stage of the joint design. This can be done via experiments and numerical simulations. The bottleneck, however, is that both the experimental route and the numerical route are time-consuming. In this project, we aim at reducing the development cycle of mechanical joining technologies by targeting a strength prognosis based on data-based and analytical models.

Two prediction methods, namely machine learning and analytical formulas, are investigated for strength prediction of self-pierce riveted or clinched joints. For both methods, we aim at an instant prediction of the mechanical strength so that a significant speedup factor can be achieved in the overall design process of the joint. The machine learning approach relies on an extensive experimental and numerical database that was generated in this project. The experimental database accounts for joining of steel and aluminium sheets with tensile strengths ranging from 200 MPa up to 1000 MPa. The database is then be used for the training and the evaluation of different strength prediction models.

The analytical strength prediction starts from an in-depth literature survey. A summary of the available formula’s is given along with the underlying assumptions. The analytical approaches are validated against the extensive experimental database enabling to select the most appropriate analytical prediction for each strength test. Moreover, the study revealed some shortcomings of currently applied analytical predictors. Consequently, some modifications to increase the predictive accuracy of analytical methods are proposed in this project.

Finally, in the framework of the project, a web application was developed enabling to instantly predict the strength of mechanical joints via machine learning and analytical methods. The user can input parameters such as material properties and process parameters. The developed prediction models are implemented in the web application and instantly report the quasi-static mechanical strength of the joint. Moreover, the webapp enables the user to profoundly understand the machine learning approach. Interested parties can request access to the "machine learning method" section enabling to develop a model with new data.

The web application can be reached via Strength Prognosis JbyF

The project results were published and can be found here.

Please contact Sam Coppieters (sam.coppieters@kuleuven.be) for more information.