< Terug naar vorige pagina

Publicatie

Gradients Do Grow on Trees: A Linear-Time O(N)-Dimensional Gradient for Statistical Phylogenetics

Tijdschriftbijdrage - Tijdschriftartikel

Calculation of the log-likelihood stands as the computational bottleneck for many statistical phylogenetic algorithms. Even worse is its gradient evaluation, often used to target regions of high probability. Order O(N)-dimensional gradient calculations based on the standard pruning algorithm require O(N2) operations, where N is the number of sampled molecular sequences. With the advent of high-throughput sequencing, recent phylogenetic studies have analyzed hundreds to thousands of sequences, with an apparent trend toward even larger data sets as a result of advancing technology. Such large-scale analyses challenge phylogenetic reconstruction by requiring inference on larger sets of process parameters to model the increasing data heterogeneity. To make these analyses tractable, we present a linear-time algorithm for O(N)-dimensional gradient evaluation and apply it to general continuous-time Markov processes of sequence substitution on a phylogenetic tree without a need to assume either stationarity or reversibility. We apply this approach to learn the branch-specific evolutionary rates of three pathogenic viruses: West Nile virus, Dengue virus, and Lassa virus. Our proposed algorithm significantly improves inference efficiency with a 126- to 234-fold increase in maximum-likelihood optimization and a 16- to 33-fold computational performance increase in a Bayesian framework.
Tijdschrift: Molecular Biology and Evolution
ISSN: 0737-4038
Issue: 10
Volume: 37
Pagina's: 3047 - 3060
Jaar van publicatie:2020
BOF-keylabel:ja
IOF-keylabel:ja
BOF-publication weight:10
CSS-citation score:1
Auteurs:International
Authors from:Higher Education
Toegankelijkheid:Open