< Terug naar vorige pagina

Publicatie

Photofragmentation Patterns of Cobalt Oxide Cations ConOm+ (n=5-9, m=4-13): From Oxygen-Deficient to Oxygen-Rich Species

Tijdschriftbijdrage - Tijdschriftartikel

Cobalt oxide clusters, ConOm+ (5 ≤ n ≤ 9 and 4 ≤ m ≤ 13), are produced by laser vaporization and studied by time-of-flight mass spectrometry. Specific stoichiometries are mass separated and photofragmented using 355 nm laser light. The preferred fragmentation channels of m = n-1, m = n-2, and m ≥ n species are investigated. Loss of oxygen molecules is the favorable dissociation channel of m ≥ n clusters. While ConOn-2+ clusters decay via the loss of a Co atom, the photofragmentation behavior of ConOn-1+ species interestingly can be divided into two regimes: the n ≤ 6 clusters tend to lose an oxygen atom, but for n > 6 they favorably dissociate via the loss of a cobalt atom. The geometric structures of selected m = n - 2 species are studied using density functional theory calculations. Dissociation energies for different evaporation channels are calculated and thermodynamically favorable channels are found to correspond to the experimental observations.
Tijdschrift: Journal of Physical Chemistry A
ISSN: 1089-5639
Issue: 37
Volume: 124
Pagina's: 7333 - 7339
Jaar van publicatie:2020
BOF-keylabel:ja
IOF-keylabel:ja
BOF-publication weight:1
CSS-citation score:1
Auteurs:International
Authors from:Higher Education
Toegankelijkheid:Open