< Terug naar vorige pagina

Publicatie

Fluorescent PCDTBT Nanoparticles with Tunable Size for Versatile Bioimaging

Tijdschriftbijdrage - Tijdschriftartikel

Conjugated polymer nanoparticles exhibit very interesting properties for use as bio-imaging agents. In this paper, we report the synthesis of PCDTBT (poly([9-(1’-octylnonyl)- 9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophene-diyl)) nanoparticles of varying sizes using the mini-emulsion and emulsion/solvent evaporation approach. The effect of the size of the particles on the optical properties is investigated using UV-Vis absorption and fluorescence emission spectroscopy. It is shown that PCDTBT nanoparticles have a fluorescence emission maximum around 710 nm, within the biological near-infrared “optical window”. The photoluminescence quantum yield shows a characteristic trend as a function of size. The particles are not cytotoxic and are taken up successfully by human lung cancer carcinoma A549 cells. Irrespective of the size, all particles show excellent fluorescent brightness for bioimaging. The fidelity of the particles as fluorescent probes to study particle dynamics in situ is shown as a proof of concept by performing raster image correlation spectroscopy. Combined, these results show that PCDTBT is an excellent candidate to serve as a fluorescent probe for near-infrared bio-imaging.
Tijdschrift: Materials
ISSN: 1996-1944
Issue: 15
Volume: 12
Jaar van publicatie:2019
Trefwoorden:conjugated polymer nanoparticles, mini-emulsion, bio-imaging, raster image correlation spectroscopy
BOF-keylabel:ja
IOF-keylabel:ja
BOF-publication weight:1
CSS-citation score:1
Authors from:Government, Higher Education, Private
Toegankelijkheid:Open