< Terug naar vorige pagina

Publicatie

Negative bioenergetic responses to pesticides in damselfly larvae are more likely when it is hotter and when temperatures fluctuate

Tijdschriftbijdrage - e-publicatie

To make more realistic predictions about the current and future effects of pesticides, we need to better understand physiological mechanisms associated with the widespread higher toxicity of many pesticides under increasing mean temperatures and daily temperature fluctuations (DTFs). One overlooked, yet insightful, mechanism are bioenergetic responses as these provide information about the balance between energy gains and costs. Therefore, we studied how the bioenergetic responses to the insecticide chlorpyrifos were affected by a higher mean temperature and a higher DTF in Ischnura elegans damselfly larvae. To quantify bioenergetic responses we measured energy availability (Ea), energy consumption (Ec) and total net energy budget (cellular energy allocation, CEA). Exposure to chlorpyrifos considerably reduced CEA values when a high mean temperature was combined with a high DTF (up to -18%). Notably, chlorpyrifos had little effect on CEA at a constant 20 °C, meaning that the bioenergetic impact of chlorpyrifos would have been underestimated if we had only tested under standard testing conditions. The chlorpyrifos-induced reductions in CEA under warming were driven by reductions in Ea (up to -16%, mainly through large reductions in sugar and fat contents) while Ec was unaffected by chlorpyrifos. Treatment groups with a lower CEA value showed a higher mortality and a lower growth rate, indicating bioenergetic responses are contributing to the higher toxicity of chlorpyrifos under warming. Our study highlights the importance of evaluating the effects of pesticides under an increase in both mean temperature and DTF to improve the ecological risk assessment of pesticides under global warming.
Tijdschrift: Chemosphere
ISSN: 0045-6535
Volume: 243
Jaar van publicatie:2020
BOF-keylabel:ja
IOF-keylabel:ja
BOF-publication weight:3
CSS-citation score:2
Authors from:Higher Education
Toegankelijkheid:Open