< Terug naar vorige pagina

Publicatie

EAM-based microwave mixer implemented in silicon photonics

Boekbijdrage - Boekhoofdstuk Conferentiebijdrage

Analogue Radio-over-Fiber (ARoF) could play an enabling role in future small-cell Radio Access Networks (RANs). The use of high-frequency carriers in 5G requires wide-band and flexible frequency converter circuits. The use of ARoF allows performing the frequency conversion in the optical domain using wide-band and flexible microwave photonic up-conversion. A lot of research has been dedicated to the development of microwave photonic mixers using LiNbO3 MZMs with promising results. However, using discrete bulky components is not a scalable solution and could be difficult to use in small-cell Radio Access Networks. In this work we present a silicon photonic up-converter and transmitter circuit. The photonic integrated circuit consists of two high-bandwidth waveguide-coupled EAMs in a MZI structure. One EAM is driven by the data on an IF carrier while the other EAM is driven by a high frequency LO. We present first simulation results of the structure and compare these results to an alternative mixer topology. The fabricated EAM-MZI mixer is then fully characterized and used to up-convert 16-QAM and 64-QAM data on a 1.5-3.5 GHz IF to 26-28 GHz carrier frequencies and transmit it over 2 km of single mode fiber.
Boek: Integratred Optics, 21st European conference, Papers
Aantal pagina's: 1
Jaar van publicatie:2019