< Terug naar vorige pagina

Publicatie

Corynebacterium glutamicum survives arsenic stress with arsenate reductases coupled to two distinct redox mechanisms

Tijdschriftbijdrage - Tijdschriftartikel

Arsenate reductases (ArsCs) evolved independently as a defence mechanism against toxic arsenate. In the genome of Corynebacterium glutamicum, there are two arsenic resistance operons (ars1 and ars2) and four potential genes coding for arsenate reductases (Cg_ArsC1, Cg_ArsC2, Cg_ArsC1' and Cg_ArsC4). Using knockout mutants, in vitro reconstitution of redox pathways, arsenic measurements and enzyme kinetics, we show that a single organism has two different classes of arsenate reductases. Cg_ArsC1 and Cg_ArsC2 are single-cysteine monomeric enzymes coupled to the mycothiol/mycoredoxin redox pathway using a mycothiol transferase mechanism. In contrast, Cg_ArsC1' is a three-cysteine containing homodimer that uses a reduction mechanism linked to the thioredoxin pathway with a k(cat) /K(M) value which is 10(3) times higher than the one of Cg_ArsC1 or Cg_ArsC2. Cg_ArsC1' is constitutively expressed at low levels using its own promoter site. It reduces arsenate to arsenite that can then induce the expression of Cg_ArsC1 and Cg_ArsC2. We also solved the X-ray structures of Cg_ArsC1' and Cg_ArsC2. Both enzymes have a typical low-molecular-weight protein tyrosine phosphatases-I fold with a conserved oxyanion binding site. Moreover, Cg_ArsC1' is unique in bearing an N-terminal three-helical bundle that interacts with the active site of the other chain in the dimeric interface.
Tijdschrift: Mol. Microbiol.
ISSN: 0950-382X
Issue: 4
Volume: 82
Pagina's: 998-1014
Jaar van publicatie:2011
Trefwoorden:redox, X-ray, kinetics, arsenic
  • Scopus Id: 80855143673
  • WoS Id: 000297546600018