< Terug naar vorige pagina

Publicatie

The effect of thermal pre-incubation and exposure on sensitivity of zebrafish (**Danio rerio**) to copper and cadmium single and binary exposures

Tijdschriftbijdrage - e-publicatie

Zebrafish (Danio rerio) is a prominent model organism in a wide range of biological studies including toxicology. However, toxicological studies are often performed at species specific optimum temperature, and knowledge on the effect of different temperature regimes on the toxicity of metal ions is rather limited. To address this knowledge gap, present study investigates the effect of various thermal scenarios (simultaneous and sequential; acute and chronic) on the toxicity of Cu and Cd in zebrafish. For this purpose we assessed mortality and whole body metal burdens as indicators of toxicity and bioavailability, respectively, and whole body electrolyte concentrations and body condition as the indicators of physiological condition. Thermal pre-incubations (for 12 or 96 h or 28 days) and subsequent metal ion exposures (for 10 days) were conducted at 17, 22, 25, 28, 32 and 34 °C. The metal exposures were performed at Cu concentrations of 1.2 μM and Cd concentrations of 0.2 μM, both singly and in binary mixtures. Irrespective of thermal treatments, Cu exposures resulted in greater mortality than Cd exposures at the given concentrations. Moreover, the Cu and Cd mixture indicated a synergistic effect. While acute pre-incubation for 12 or 96 h at elevated temperatures increased mortality in the subsequent metal exposure at the optimum temperature (28 °C), pre-incubation at cold temperatures in this scenario appeared to increase tolerance towards the subsequent metal exposure. Chronic thermal pre-incubation of zebrafish to a range of temperatures for 28 days moderated the effect of temperature fluctuations on subsequent metal toxicity at the optimum temperature. Chronic thermal pre-incubation at a range of temperatures followed by metal exposure at the same temperature showed that environmental temperature variations (higher or lower than optimal temperature) coupled with metal exposure, led to increased mortality, furthermore, the highest whole body metal burdens were measured in this scenario. Nevertheless, neither the whole body burden of metals, nor the metal accumulation rate, were predictors of mortality, i.e. these two values were not higher in dead fish in comparison to those that survived the exposures. Finally, we observed a significant decrease in the whole body Na+ level of dead fish in comparison to fish which survived the exposure conditions, suggesting that survival depends on maintaining Na+ homeostasis under the applied multi-stress conditions. Overall, our results show that thermal pre-history and ambient temperature play an important role in determining the tolerance of zebrafish towards metal ion stress.
Tijdschrift: Aquatic toxicology
ISSN: 0166-445X
Volume: 213
Jaar van publicatie:2019
Trefwoorden:A1 Journal article
BOF-keylabel:ja
BOF-publication weight:10
CSS-citation score:1
Authors from:Higher Education
Toegankelijkheid:Open