< Terug naar vorige pagina

Publicatie

Correlation Between Cone-Beam Computed Tomography and High-Resolution Peripheral Computed Tomography for Assessment of Wrist Bone Microstructure

Tijdschriftbijdrage - Tijdschriftartikel

High-resolution peripheral quantitative computed tomography (HR-pQCT) is considered as the best technique to measure bone microarchitecture in vivo. However, a breakthrough for medical applications is inhibited because of the restricted field of view (∼9 mm) and a relatively long acquisition time (∼3 minutes). The goal of this study was to compare the accuracy of cone-beam computed tomography (CBCT) and HR-pQCT and to determine the agreement between CBCT and HR-pQCT in quantifying bone structural parameters. Nineteen trapezia of arthritic patients were scanned four times ex vivo: 1) CBCT (NewTom 5G, Cefla, at 75 μm); 2) HR-pQCT (XTremeCT-I, Scanco, at 82 μm); 3) HR-pQCT (XTremeCT-II, Scanco, at 60.7 μm); and 4) microCT (SkyScan1172, Bruker, at 19.84 μm). XTremeCT-I and XtremeCT-II were reconstructed, segmented, and analyzed following the manufacturer's guidelines. CBCT was reconstructed with in-house developed software and analyzed twice: once with an adaptive segmentation technique combined with a direct analysis method (AT-DM) and once with a Laplace-Hamming filtering technique combined with an indirect analysis method (LH-IM). Parameters of interest included bone volume fraction (BV/TV) and trabecular thickness (Tb.Th), separation (Tb.Sp), and number (Tb.N). The analyses of the CBCT data showed that the AT-DM analysis correlated better with microCT for BV/TV, Tb.Sp, and Tb.N, whereas the LH-IM technique correlated better for Tb.Th. Evaluated over all parameters, the coefficient of determination for XtremeCT-I, XtremeCT-II, and CBCT were higher as R2  = 0.68, 0.72, and 0.67, respectively. For CBCT, the correlations improved when three samples with very thin trabeculae close to each other were excluded and became similar to those for XtremeCT-I and XtremeCT-II. Interesting for clinical practice is that those bones could be identified automatically with the CBCT scanner. We conclude that CBCT produced similar accuracy as HR-pQCT in bone morphometric analyses of trapezia. The broader range of application, larger field of view, and shorter acquisition time make CBCT a valuable alternative to HR-pQCT. © 2019 American Society for Bone and Mineral Research.
Tijdschrift: JOURNAL OF BONE AND MINERAL RESEARCH
ISSN: 0884-0431
Issue: 5
Volume: 34
Pagina's: 867 - 874
Jaar van publicatie:2019
BOF-keylabel:ja
IOF-keylabel:ja
BOF-publication weight:3
CSS-citation score:2
Auteurs:International
Authors from:Higher Education
Toegankelijkheid:Open