< Terug naar vorige pagina

Publicatie

Commutative post-Lie algebra structures and linear equations for nilpotent Lie algebras

Tijdschriftbijdrage - Tijdschriftartikel

© 2019 Elsevier Inc. We show that for a given nilpotent Lie algebra g with Z(g)⊆[g,g] all commutative post-Lie algebra structures, or CPA-structures, on g are complete. This means that all left and all right multiplication operators in the algebra are nilpotent. Then we study CPA-structures on free-nilpotent Lie algebras F g,c and discover a strong relationship to solving systems of linear equations of type [x,u]+[y,v]=0 for generator pairs x,y∈F g,c . We use results of Remeslennikov and Stöhr concerning these equations to prove that, for certain g and c, the free-nilpotent Lie algebra F g,c has only central CPA-structures.
Tijdschrift: Journal of algebra
ISSN: 0021-8693
Volume: 526
Pagina's: 12 - 29
Jaar van publicatie:2019
BOF-keylabel:ja
IOF-keylabel:ja
BOF-publication weight:1
CSS-citation score:2
Auteurs:International
Authors from:Higher Education
Toegankelijkheid:Open