< Terug naar vorige pagina

Publicatie

$MnFe_{0.5}Ru_{0.5}O_{3}$

Tijdschriftbijdrage - Tijdschriftartikel

Ondertitel:an above-room-temperature antiferromagnetic semiconductor
A transition-metal-only MnFe0.5Ru0.5O3 polycrystalline oxide was prepared by a reaction of starting materials MnO, MnO2, Fe2O3, RuO2 at 6 GPa and 1873 K for 30 minutes. A combination of X-ray and neutron powder diffraction refinements indicated that MnFe0.5Ru0.5O3 adopts the corundum (alpha-Fe2O3) structure type with space group R (3) over barc, in which all metal ions are disordered. The centrosymmetric nature of the MnFe0.5Ru0.5O3 structure is corroborated by transmission electron microscopy, lack of optical second harmonic generation, X-ray absorption near edge spectroscopy, and Mossbauer spectroscopy. X-ray absorption near edge spectroscopy of MnFe0.5Ru0.5O3 showed the oxidation states of Mn, Fe, and Ru to be 2+/3+, 3+, and similar to 4+, respectively. Resistivity measurements revealed that MnFe0.5Ru0.5O3 is a semiconductor. Magnetic measurements and magnetic structure refinements indicated that MnFe0.5Ru0.5O3 orders antiferromagnetically around 400 K, with magnetic moments slightly canted away from the c axis. Fe-57 Mossbauer confirmed the magnetic ordering and Fe3+ (S = 5/2) magnetic hyperfine splitting. First principles calculations are provided to understand the electronic structure more thoroughly. A comparison of synthesis and properties of MnFe0.5Ru0.5O3 and related corundum Mn2BB'O-6 derivatives is discussed.
Tijdschrift: Journal of materials chemistry C : materials for optical and electronic devices
ISSN: 2050-7526
Volume: 7
Pagina's: 509 - 522
Jaar van publicatie:2019
Trefwoorden:A1 Journal article
BOF-keylabel:ja
BOF-publication weight:6
CSS-citation score:1
Auteurs:International
Authors from:Higher Education
Toegankelijkheid:Closed