< Terug naar vorige pagina

Publicatie

In-vivo identification of thick, thin and pale stripes of macaque area V2 using sub-millimeter resolution (f)MRI at 3 Tesla

Tijdschriftbijdrage - Tijdschriftartikel

Primate area V2 contains a repetitive pattern of thick, thin and pale cytochrome oxidase stripes that are characterized by largely discrete in- and output channels, as well as differences in function, and myelo- and cytoarchitecture. Stripes have been identified mainly using microscope-based imaging of tiny portions of superficially located V2, or by postmortem methods, hence, the quest for (quasi) noninvasive tools to study these mesoscale functional units. Only recently, stripe-like V2 patterns have been demonstrated in humans with high-field (functional) magnetic resonance imaging (f)MRI, but in both such studies only 2 stripe compartments could be identified. Although interstripe distances in monkeys are ~half of those in humans, we show that all 3 V2 stripe classes can be reliably separated using submillimeter (f)MRI (0.6 mm isotropic voxels) on regular 3 T scanners by combining contrast agents and implanted phased-array coils. Specifically, we show highly reproducible fMRI patterns, both within and across subjects, of color-selective thin and disparity-selective thick stripes. Furthermore, reliable MRI-based higher myelin-density was observed in pale stripes. Hence, this is the first study showing segregation of columns using (f)MRI-based methods in macaque cortex, which opens the possibility of studying these elementary building blocks of the visual system noninvasively on a large scale.
Tijdschrift: Cerebral Cortex
ISSN: 1047-3211
Issue: 2
Volume: 29
Pagina's: 544 - 560
Jaar van publicatie:2019
BOF-keylabel:ja
IOF-keylabel:ja
BOF-publication weight:6
CSS-citation score:1
Auteurs:International
Authors from:Private, Higher Education
Toegankelijkheid:Open