< Terug naar vorige pagina

Publicatie

Enhancing the anti-biofilm activity of 5-aryl-2-aminoimidazoles through nature inspired dimerisation

Tijdschriftbijdrage - Tijdschriftartikel

The increased tolerance of biofilms against disinfectants and antibiotics has stimulated research into new methods of biofilm prevention and eradication. In our previous work, we have identified the 5-aryl-2-aminoimidazole core as a scaffold that demonstrates preventive activity against biofilm formation of a broad range of bacterial and fungal species. Inspired by the dimeric nature of natural 2-aminoimidazoles of the oroidin family, we investigated the potential of dimers of our decorated 5-aryl-2-aminoimidazoles as biofilm inhibitors. A synthetic approach towards 2-aminoimidazole dimers linked by an alkyl chain was developed and a total of 48 dimers were synthesized. The linkers were introduced at two different positions, the N1-position or the N2-position, and the linker length and the substitution of the 5-phenyl ring (H, F, Cl, Br) were varied. Although, no clear correlation between linker length and biofilm inhibition was observed, a strong increase in anti-biofilm activity for almost all N1,N1'-linked dimers was obtained, compared to the respective monomers against Salmonella Typhimurium, Escherichia coli and Staphylococcus aureus. The N2,N2'-linked dimers, having a H- or F-substitution, were also found to show a strong increase in anti-biofilm activity compared to the respective monomers against these three bacterial species and against Pseudomonas aeruginosa. In addition, the obtained growth measurements suggest a broad concentration range with specific biofilm inhibition and no effect on the planktonic growth against Salmonella Typhimurium and Pseudomonas aeruginosa.
Tijdschrift: Bioorganic & Medicinal Chemistry
ISSN: 0968-0896
Issue: 8
Volume: 26
Pagina's: 1470 - 1480
Jaar van publicatie:2018
BOF-keylabel:ja
IOF-keylabel:ja
BOF-publication weight:1
CSS-citation score:1
Auteurs:International
Authors from:Higher Education