< Terug naar vorige pagina

Publicatie

Life cycle impacts of topsoil erosion on aquatic biota: case study on Eucalyptus globulus forest

Tijdschriftbijdrage - Tijdschriftartikel

© 2016, Springer-Verlag Berlin Heidelberg. Purpose: This study illustrates the applicability of a framework to conduct a spatially distributed inventory of suspended solids (SS) delivery to freshwater streams combined with a method to derive site-specific characterisation factors for endpoint damage on aquatic ecosystem diversity. A case study on Eucalyptus globulus stands located in Portugal was selected as an example of a land-based system. The main goal was to assess the relevance of SS delivery to freshwater streams, providing a more comprehensive assessment of the SS impact from land use systems on aquatic environments. Methods: The WaTEM/SEDEM model, which was used to perform the SS inventory, is a raster-based empirical erosion and deposition model. This model allowed to predict the amount of SS from E. globulus stands under study and route this amount through the landscape towards the drainage network. Combining the spatially explicit SS inventory with the derived site-specific endpoint characterisation factors of SS delivered to two different river sections, the potential damages of SS on macroinvertebrates, algae and macrophytes were assessed. In addition, this damage was compared with the damage obtained with the commonly used ecosystem impact categories of the ReCiPe method. Results and discussion: The relevance of the impact from SS delivery to freshwater streams is shown, providing a more comprehensive assessment of the SS impact from land use systems on aquatic environments. The SS impacts ranged from 15.5 to 1234.9 PDF m3.yr.ha−1.revolution−1 for macroinvertebrates, and from 5.2 to 411.9 PDF.m3.yr.ha−1.revolution−1 for algae and macrophytes. For some stands, SS potential impacts on macroinvertebrates have the same order of magnitude than freshwater eutrophication, freshwater ecotoxicity, terrestrial ecotoxicity and terrestrial acidification impacts. For algae and macrophytes, most of the stands present SS impacts of the same order of magnitude as terrestrial ecotoxicity, one order of magnitude higher than freshwater eutrophication and two orders of magnitude lower than freshwater ecotoxicity and terrestrial acidification. Conclusions: The SS impact results allow concluding that the increase of SS in the water column can cause biodiversity damage and that the calculated impacts can have a similar or even higher contribution to the total environmental impact than the commonly used ecosystem impact categories of the ReCiPe method. A wide application of the framework and method developed at a local scale will enable the establishment of a regionalised SS inventory database and a deep characterisation of the potential environmental impacts of SS on local aquatic environments.
Tijdschrift: The International Journal of Life Cycle Assessment
ISSN: 0948-3349
Issue: 2
Volume: 22
Pagina's: 159 - 171
Jaar van publicatie:2016
BOF-keylabel:ja
IOF-keylabel:ja
BOF-publication weight:1
CSS-citation score:1
Auteurs:International
Authors from:Higher Education
Toegankelijkheid:Open