< Terug naar vorige pagina

Publicatie

Realistic Vendor-Specific Synthetic Ultrasound Data for Quality Assurance of 2-D Speckle Tracking Echocardiography: Simulation Pipeline and Open Access Database

Tijdschriftbijdrage - Tijdschriftartikel

Two-dimensional (2-D) echocardiography is the modality of choice in the clinic for the diagnosis of cardiac disease. Hereto, speckle tracking (ST) packages complement visual assessment by the cardiologist by providing quantitative diagnostic markers of global and regional cardiac function (e.g., displacement, strain, and strain-rate). Yet, the reported high vendor-dependence between the outputs of different ST packages raises clinical concern and hampers the widespread dissemination of the ST technology. In part, this is due to the lack of a solid commonly accepted quality assurance pipeline for ST packages. Recently, we have developed a framework to benchmark ST algorithms for 3-D echocardiography by using realistic simulated volumetric echocardiographic recordings. Yet, 3-D echocardiography remains an emerging technology, whereas the compelling clinical concern is, so far, directed to the standardization of 2-D ST only. Therefore, by building upon our previous work, we present in this paper a pipeline to generate realistic synthetic sequences for 2-D ST algorithms. Hereto, the synthetic cardiac motion is obtained from a complex electromechanical heart model, whereas realistic vendor-specific texture is obtained by sampling a real clinical ultrasound recording. By modifying the parameters in our pipeline, we generated an open-access library of 105 synthetic sequences encompassing: 1) healthy and ischemic motion patterns; 2) the most common apical probe orientations; and 3) vendor-specific image quality from seven different systems. Ground truth deformation is also provided to allow performance analysis. The application of the provided data set is also demonstrated in the benchmarking of a recent academic ST algorithm.
Tijdschrift: Ieee Transactions On Ultrasonics Ferroelectrics And Frequency Control
ISSN: 0885-3010
Issue: 3
Volume: 65
Pagina's: 411 - 422
Jaar van publicatie:2018
BOF-keylabel:ja
IOF-keylabel:ja
BOF-publication weight:1
CSS-citation score:2
Auteurs:International
Authors from:Higher Education