< Terug naar vorige pagina

Publicatie

Study of the deformation-driving nu d(5/2) orbital in Ni-67(28)39 using one-neutron transfer reactions

Tijdschriftbijdrage - Tijdschriftartikel

The νg9/2, d5/2, s1/2 orbitals are assumed to be responsible for the swift onset of collectivity observed in the region below 68Ni. Especially the single-particle energies and strengths of these orbitals are of importance. We studied such properties in the nearby 67Ni nucleus, by performing a (d, p)-experiment in inverse kinematics employing a post-accelerated radioactive ion beam (RIB) at the REX-ISOLDE facility. The experiment was performed at an energy of 2.95 MeV/u using a combination of the T-REX particle detectors, the Miniball γ-detection array and a newly-developed delayed-correlation technique as to investigate μs-isomers. Angular distributions of the ground state and multiple excited states in 67Ni were obtained and compared with DWBA cross-section calculations, leading to the identification of positive-parity states with substantial νg9/2 (1007 keV) and νd5/2 (2207 keV and 3277 keV) single-particle strengths up to an excitation energy of 5.8 MeV. 50% of the νd5/2 single-particle strength relative to the νg9/2-orbital is concentrated in and shared between the first two observed 5/2 + levels. A comparison with extended Shell Model calculations and equivalent (3He, d) studies in the region around 9040Zr50 highlights similarities for the strength of the negative-parity pf and positive-parity g9/2 state, but differences are observed for the d5/2 single-particle strength. © 2014 The Authors.
Tijdschrift: Physics Letters B
ISSN: 0370-2693
Volume: 736
Pagina's: 533 - 538
Jaar van publicatie:2014
BOF-keylabel:ja
IOF-keylabel:ja
BOF-publication weight:3
CSS-citation score:1
Auteurs:International
Authors from:Government, Higher Education
Toegankelijkheid:Closed