< Terug naar vorige pagina

Publicatie

Three-Dimensional DNA Origami as Programmable Anchoring Points for Bioreceptors in Fiber Optic Surface Plasmon Resonance Biosensing

Tijdschriftbijdrage - Tijdschriftartikel

Many challenges in biosensing originate from the fact that the all-important nanoarchitecture of the biosensor surface, including precise density and orientation of bioreceptors, is not entirely comprehended. Here, we introduced a three-dimensional DNA origami as a bioreceptor carrier to functionalize the fiber optic surface plasmon resonance (FO-SPR) sensor with nanoscale precision. Starting from a 24-helix bundle, two distinct DNA origami structures were designed to position thrombin-specific aptamers with different densities and distances (27 and 113 nm) from the FO-SPR surface. The origami-based biosensors not only proved to be capable of reproducible, label-free thrombin detection but revealed also valuable innovative features: (1) a significantly better performance in the absence of backfilling, known as essential in the biosensing field, suggesting improved bioreceptor orientation and accessibility, and (2) a wider linear range compared to previously reported thrombin biosensors. We envisage that our method will be beneficial for both scientists and clinicians looking for new surface (bio)chemistry and improved diagnostics.
Tijdschrift: ACS Applied Materials and Interfaces
ISSN: 1944-8244
Issue: 28
Volume: 10
Pagina's: 23539 - 23547
Jaar van publicatie:2018
BOF-keylabel:ja
IOF-keylabel:ja
BOF-publication weight:6
CSS-citation score:2
Auteurs:International
Authors from:Higher Education
Toegankelijkheid:Open