< Terug naar vorige pagina

Project

Variationele kwantumtraject beschrijving van gedreven-dissipatieve systemen.

Variationele principes spelen een centrale rol in ons theoretisch begrip van gesloten kwantumsystemen bij thermisch evenwicht. Voor open, gedreven-dissipatieve systemen zijn variationele technieken minder ontwikkeld. Klassieke voorbeelden van gedreven-dissipatieve systemen gaan van convectie-rollen in hydrodynamica tot elektrische patronen in het hart. Gedurende de laatste jaren heeft vooruitgang in de fabricatie van elektromagnetische resonatoren gekoppeld aan materie-vrijheidsgraden het theoretische onderzoek naar gedreven-dissipatieve kwantumsystemen gestimuleerd. Een belangrijke motivatie voor dit onderzoek is de mogelijkheid om gecorreleerde kwantumtoestanden te creëren, met mogelijke toepassingen in kwantumcomputing en kwantumsimulatie.De theoretische beschrijving van gedreven-dissipatieve systemen kan op twee equivalente manieren aangepakt worden: een master vergelijking voor de dichtheidsmatrix en een kwantumtraject vergelijking voor de golffunctie. Deze twee technieken verhouden zich tot elkaar als de diffusievergelijking tot de Langevin vergelijking in de theorie van de Brownse beweging. Een praktisch voordeel van de kwantumtraject methode is dat ze opgelost kan worden in de Hilbertruimte van toestanden in plaats van de kwadratisch grotere Hilbertruimte van dichtheidsmatrices. Een conceptuele bonus is dat ze de verschillende macroscopische 'Schrödinger kat" superposities kan ontrafelen en zo inzicht geeft in het ontstaan van klassieke configuraties uit een verstrengelde kwantumtoestand. In dit project zullen we variationele benaderingen tot de dynamica van de kwantumtrajecten onderzoeken. Men kan verwachten dat de ontrafelde golffuncties eenvoudiger te vatten zijn met een variationele beschrijving dan de volledige dichtheidsmatrix. Deze verwachting is reeds bevestigd door een eerste studie van de Gutzwiller benadering op een fotonische molecule. Gesterkt door dit succes zullen we een aantal variationele benaderingen uitwerken voor de simulatie van de kwantumtrajecten van een aantal gedreven-dissipatieve kwantumsystemen.Eén van de voordelen van een dergelijke beschrijving is dat ze nog realistisch uitgevoerd kan worden voor grote systemen en in meer dan één dimensie, waar andere numerieke technieken vaak niet meer haalbaar zijn. Toegang tot grote systemen is in het bijzonder belangrijk bij de studie van fase-overgangen, die pas goed gedefinieerd zijn in de thermodynamische limiet.Het belangrijkste doel van dit onderzoeksproject is een nieuwe theoretische tool te ontwikkelen voor de beschrijving van gedreven-dissipatieve systemen. We plannen toepassingen van deze techniek op het beter begrijpen van fase-overgangen, wat tot nieuwe fundamentele inzichten kan leiden in de verschillen en gelijkenissen tussen gedreven-dissipatieve systemen en gesloten systemen in thermisch evenwicht.
Datum:1 okt 2017 →  30 sep 2021
Trefwoorden:MONTE CARLO SIMULATIES, THEORETISCHE STUDIE
Disciplines:Toegepaste wiskunde, Astronomie en ruimtewetenschappen, Klassieke fysica, Materiaalfysica, Mathematische fysica, Kwantumfysica