< Terug naar vorige pagina

Publicatie

Nutrient recovery from bio-digestion waste: from field experimentation to model-based optimization

Boek - Dissertatie

The increasing awareness of natural resource depletion, the increasing demand of nutrients and energy for food production, and the more and more stringent nutrient discharge and fertilization levels, have resulted in an increased attention for nutrient recovery from municipal and agricultural wastes. This PhD dissertation aims at stimulating the transition to a bio-based economy by providing (tools to develop) sustainable strategies for nutrient recovery from organic wastes following bio-energy production through anaerobic digestion (= bio-digestion waste). Particular attention is paid to the valorization of the recovered products as renewable substitutes for chemical fertilizers and/or as sustainable organo-mineral fertilizers in agriculture. Three complementary research phases were conducted: 1) technology inventory and product classification, 2) product value evaluation, 3) process modelling and optimization. In the first phase, a systematic technology review and product classification was performed. In phase 2, product characterizations and mass balance analyses at full-scale waste(water) resource recovery facilities (WRRFs) were executed. An economic and ecological evaluation of different bio-based fertilization scenarios was conducted and the most sustainable scenarios were selected for subsequent agronomic evaluation at field and greenhouse scale. In phase 3, a generic nutrient recovery model library was developed aiming at fertilizer quantity and quality as model outputs. Increased insights in unit process performance and interactions were obtained through global sensitivity analyses. The models were successfully used as a tool for treatment train configuration and optimization. Based on all acquired knowledge, a generic roadmap for setting up nutrient recovery strategies as function of fertilizer markets, legislations, and waste characterization was established. As such, the present dissertation further develops the concepts of maximally closing nutrient cycles in a cradle-to-cradle approach. The work reveals important evidence of the positive impact of recovered products on the economy, agronomy, and ecology of intensive plant production. Moreover, it provides the fundamental information and tools to facilitate the implementation and optimization of sustainable nutrient recovery strategies. All of this may open up new opportunities for sustainable and more bio-based economic growth and thus create a win-win situation for the environment, the society, and the economy in Belgium, Canada, and beyond.
ISBN:9789059898127
Jaar van publicatie:2015
Toegankelijkheid:Open