Publications
Mechanical evaluation of a patient-specific additively manufactured subperiosteal jaw implant (AMSJI) using finite-element analysis KU Leuven
Edentulism with associated severe bone loss is a widespread condition that hinders the use of common dental implants. An additively manufactured subperiosteal jaw implant (AMSJI) was designed as an alternative solution for edentulous patients with Cawood and Howell class V-VIII bone atrophy. A biomechanical evaluation of this AMSJI for the maxilla in a Cawood and Howell class V patient was performed via finite-element analysis. Occlusal and ...
Adaptive local thresholding can enhance the accuracy of HR-pQCT-based trabecular bone morphology assessment KU Leuven
High-resolution peripheral quantitative computed tomography (HR-pQCT) devices can scan extremities at bone microstructural level in vivo and are used mainly in research of bone diseases. Two HR-pQCT scanners are commercially available to date: XtremeCT (first generation) and XtremeCT-II (second generation) from Scanco Medical AG (Switzerland). Recently, we have proposed an adaptive local thresholding (AT) technique and showed that it can improve ...
Stress distribution in the bonobo (Pan paniscus) trapeziometacarpal joint during grasping KU Leuven
The primate thumb plays a central role in grasping and the basal trapeziometacarpal (TMC) joint is critical to its function. The TMC joint morphology varies across primates, yet little is known about form-function interaction within in the TMC joint. The purpose of this study was to investigate how stress distributions within the joint differ between five grasping types commonly employed by bonobos (Pan paniscus). Five cadaveric bonobo forearms ...
Outcomes of 3-D corrective osteotomies for paediatric malunited both-bone forearm fractures KU Leuven
Closed treatment of paediatric diaphyseal forearm fractures carries the risk of re-displacement, which can lead to symptomatic malunions. This is because growth will not correct angulation deformity as it does in metaphyseal fractures. The purpose of this prospective cohort study was to evaluate the outcomes after 3-D-planned corrective osteotomy with patient-specific surgical guides for paediatric malunited forearm fractures causing impaired ...
Homogenized finite element models can accurately predict screw pull-out in continuum materials, but not in porous materials KU Leuven
BACKGROUND AND OBJECTIVE: Bone screw fixation can be estimated with several test methods such as insertion torque, pull-out, push-in and bending tests. A basic understanding of the relationship between screw fixation and bone microstructure is still lacking. Computational models can help clarify this relationship. The objective of the paper is to evaluate homogenized finite element (hFE) models of bone screw pull-out. METHODS: Experimental ...
Mechanical and morphological characterization of PMMA/bone composites in human femoral heads KU Leuven
PMMA bone cement has gained an important place in a variety of orthopaedic applications in the femur. However, appropriate data on the mechanical properties of bone-cement composites from the human femur are lacking. Therefore, the goal of this study was to determine the morphological and quasi-static compressive properties of proximal femoral bone-cement composites. Thirty trabecular bone specimens were extracted from fifteen pairs of human ...
Automated muscle elongation measurement during reverse shoulder arthroplasty planning KU Leuven
BACKGROUND: Adequate deltoid and rotator cuff elongation in reverse shoulder arthroplasty is crucial to maximize postoperative functional outcomes and to avoid complications. Measurements of deltoid and rotator cuff elongation during preoperative planning can support surgeons in selecting a suitable implant design and position. Therefore, this study presented and evaluated a fully automated method for measuring deltoid and rotator cuff ...
Quantification of 3D microstructural parameters of trabecular bone is affected by the analysis software KU Leuven
Over the last decades, the use of high-resolution imaging systems to assess bone microstructural parameters has grown immensely. Yet, no standard defining the quantification of these parameters exists. It has been reported that different voxel size and/or segmentation techniques lead to different results. However, the effect of the evaluation software has not been investigated so far. Therefore, the aim of this study was to compare the bone ...