Publications
Electromagnetic properties of indium isotopes illuminate the doubly magic character of 100Sn KU Leuven
Opportunities for fundamental physics research with radioactive molecules KU Leuven
Molecules containing short-lived, radioactive nuclei are uniquely positioned to enable a wide range of scientific discoveries in the areas of fundamental symmetries, astrophysics, nuclear structure, and chemistry. Recent advances in the ability to create, cool, and control complex molecules down to the quantum level, along with recent and upcoming advances in radioactive species production at several facilities around the world, create a ...
SATLAS2: An update to the package for analysis of counting data KU Leuven
SATLAS2 is a Python library that enables the user to fit counting data from laser spectroscopy experiments, in particular those that measure atomic hyperfine structures. In this analysis, the user can choose how the uncertainties are treated and can also opt to generate a random walk in order to present a fuller picture of the parameter space. The major upgrade compared to the previous version of SATLAS is the different architecture of the ...
Precision spectroscopy and laser-cooling scheme of a radium-containing molecule KU Leuven
Molecules containing heavy radioactive nuclei are predicted to be extremely sensitive to violations of the fundamental symmetries of nature. The nuclear octupole deformation of certain radium isotopes massively boosts the sensitivity of radium monofluoride molecules to symmetry-violating nuclear properties. Moreover, these molecules are predicted to be laser coolable. Here we report measurements of the rovibronic structure of radium monofluoride ...