Title Promoter Affiliations Abstract "Low cost bridge health monitoring by ambient vibration tests using wireless sensors (Spanish) Ensayos dinámicos de bajo coste para el mantenimiento de puentes sometidos a cargas ambientales no controladas, utilizando sensores inalámbricos." "Guido De Roeck" "Structural Mechanics Section" "The proposed research project is aimed to develop and implement a system for damage detection and localization in bridge structures. This structural health monitoring system is based on ambient dynamic tests, i.e. tests subjected to uncontrolled loading (traffic, wind etc.), and on the application of advanced structural identification techniques. The tests are carried out in such a way that existing bridge traffic remains undisturbed. The structural health monitoring system is automated to integrate the different measurement phases: (1) positioning of sensors, (2) data acquisition, (3) deduction of dynamic structural characteristics and, (4) evaluation of the structural behaviour. The measurement campaign can be carried out by a reduced technical team in a relatively short time. In this context different bridge tests can be considered: bridges without accessible design, with a preliminary design, with an updated design and with results from a previous ambient dynamic test. Existing algorithms and related software will be upgraded in view of automatic design of low cost sensor distribution and damage localization from the test output data. The developed system will be applied to two pilot bridges to check the quality level of the derived damage information. The structural health monitoring system will be tailored to the common bridge types: simply supported or continuous, in reinforced or prestressed concrete. Finally, in order to evaluate the efficiency of the low cost wireless sensor system, a comparison will be made with a traditional wired system, regarding feasibility and cost effectiveness. (Spanish):El proyecto propuesto se dirige a desarrollar y hacer operativo un sistema de detección y localización de daños en estructuras de puentes. El sistema está basado en ensayos dinámicos ambientales, es decir, bajo cargas no controladas (tráfico, viento, etc.), y en la utilización de técnicas de identificación estructural. Los ensayos se realizan de forma que el tráfico existente no sea perturbado. Se intenta automatizar el sistema de forma que los procesos que lo integran: (1) disposición de los sensores, (2) lectura de los resultados del ensayo, (3) interpretación de las características dinámicas de la estructura y (4) identificación posterior del comportamiento de la estructura puedan llevarse a cabo por un equipo reducido (del orden de tres personas) y en un tiempo relativamente corto (tres a cuatro horas). Para ello se distinguirán los ensayos de puentes con proyecto actualizado o no, así como los de los puentes con proyecto no accesible y los puentes que han sido controlados con este tipo output-only de ensayos. A partir del software existente se desarrollan procedimientos específicos que permitan, realizar medidas inalámbricas con una nube de sensores de bajo costo. A partir de estas medidas se trata de localizar el daño. El sistema desarrollado se aplicará a ensayos piloto en los que se podrán comprobar los niveles estándar de calidad alcanzados. El sistema se aplicará a las estructuras habituales de puentes simplemente apoyados y continuos de hormigón armado y pretensado. Finalmente, con objeto de alcanzar una mayor eficiencia en el sistema de ensayo se realizará un contraste de fiabilidad de la medida inalámbrica mediante nube de sensores frente a un sistema clásico cableado con un número menor de sensores calibrados." "New-to-nature Biological Sensors: Unlocking the full potential of biological sensors beyond nature" "Marjan De Mey" "Department of Data analysis and mathematical modelling, Department of Biotechnology" "“If you can not measure it, you can not improve it” (Lord Kelvin) clearly articulates the need for efficient and robust sensors in all fields of science and technology, especially in pharma, agriculture, environment, food and industrial biotechnology. However, current analytic techniques require laborious, expensive multi-step processes with highly specialized, non-portable equipment. As a solution, all living organisms have been evolving and fine-tuning specialized mechanisms to precisely monitor a vast array of different types of molecules. Reprogramming such mechanisms to produce fluorescent proteins in response of these molecules allows researchers to build Biological Sensors (BioS). Because of their biological context, BioS are cheap, fast, sustainable, portable, self-generating and highly sensitive and specific. Therefore, BioS bear the potential to become key-enabling tools to spur innovation and scientific exploration in various disciplines. However, the main bottleneck toward unlocking the full potential of BioS is the fact that all BioS development is currently fully dependent on and limited to only those biological mechanisms for which all BioS Building Blocks are fully identified and characterized. With this project, I want to expand my BioS research path and combine innovative engineering strategies with computational learning techniques to create new-to-nature BioS Building Blocks and greatly expand the portfolio of available BioS for any molecule of interest." "Naar een vernieuwd beleid rond beweging en sport voor senioren in Vlaanderen." "Marc Theeboom" "Sports policy and management" "Naar een vernieuwd beleid rond beweging en sport voor senioren in Vlaanderen." "SeNS: Seniors Nework Support: wetenschapelijke ondersteuning bij het ontwikkelen van een transnationaal model voor netwerkontwikkeling bij senioren." "Dominique Verté" "Educational Science" "Demographic change with its spatial and economic effects is apparent in Europe and is a major challenge for spatial development in the NWE territory. 2 major questions have to be answered: What can be done to support local care networks? (Commission of the European Communities) How can the EU strengthen its social capital in the field of elderly and thereby reduce social costs on local and regional level? The SeNS project aims to strengthen senior networks to enable a self-determined satisfying life for every senior, to use the social capital of these networks for the ageing NWE society and thus permanently relieve the welfare systems. Therefore SeNS will develop a viable sustainable model for Senior Network Support with different modules to enable the responsible institutions to assess whether the required networks in a spatial unit (quarter, city, region) are present and if they are sufficient, what the strategies look like to create the sufficient degree of cross-linking in terms of social capital (bonding, bridging, linking), what measures, instruments and tools are appropriate and necessary to support Senior Network(s) sustainable and how the issue ""Senior Network Support"" can be promoted in the local public and particularly on the European level will have a sustainable and durable lobby. The SeNS age image is a positive one of the active, engaged, experienced elderly. Ageing of individuals and society is regarded as a chance in developing NWE's cities by taking the opportunities in terms of building social capital and enhancing senior citizens' quality of life by empowering them to take part in a full range of activities in different spheres. Ensuring the success of SeNS and to facilitate future learning the involvement and engagement of seniors and stakeholders is crucial: it is vital that older people have a voice in the way developments are pursued and equally important is the expertise and skills they can bring to the pilot actions. click to enlarge" "Hyper-dimensional scalable sensors: the road forward to always-on context-awareness in electronic devices?" "Joni Dambre" "Department of Electronics and information systems" "We, humans, are masters at constantly capturing tons of sensory information in an “lways-on”fashion. Yet, crucial to our ability to process this hyperdimensional stream of sensory information, is that we do not always devote the same level of mental effort to all sensory inputs. This dynamic scalability allows us to extract the relevant information from the sensory data with our limited human computational bandwidth. Wouldn’ it be great if electronics could also benefit from such scalable processing of a hyperdimensional stream of sensory data? This would enable robots, drones, cars, or buildings to constantly be aware of their complete surroundings. Currently, such devices struggle to process hyperdimensional visual data under the energy and processing constraints of embedded devices. This can be overcome by bringing in similar dynamic scalability when processing the hyperdimensional data. HYPERSCALES will enable such always-on hyper-dimensional, scalable sensing, focusing on visual sensors. The goal is to demonstrate a ring of many low-cost visual sensors, capturing a rich datastream of omnidirectional information. Using a new paradigm of online scalable neural networks, and aligned dynamic scaling of customly designed hardware, always-on visual awareness will become feasible with an order or magnitude lower energy consumption than the state-of-theart. Unique is the tight interplay between algorithmic (Prof. Dambre) and hardware (Prof. Verhelst) tunability." "Sensors for Food: validation process millimeter-wave sensors for drying processes and moisture provisions" "Johan Stiens" "Flanders' Food, Interdisciplinary Institute for Broadband Technology, Interuniversitair Micro-Elektronica Centrum, Electronics and Informatics" "Sensors offer opportunities for both food and technology companies to increase their innovation capacity and their gap and competitiveness in an international context." "Hyper-dimensional scalable sensors: the road forward to always-on context-awareness in electronic devices? (HYPERSCALES)" "Marian Verhelst" "Electronic Circuits and Systems (ECS)" "We, humans, are masters at constantly capturing tons of sensory information in an “always-on” fashion. Yet, crucial to our ability to process this hyperdimensional stream of sensory information, is that we do not always devote the same level of mental effort to all sensory inputs. This dynamic scalability allows us to extract the relevant information from the sensory data with our limited human computational bandwidth. Wouldn’t it be great if electronics could also benefit from such scalable processing of a hyperdimensional stream of sensory data? This would enable robots, drones, cars, or buildings to constantly be aware of their complete surroundings. Currently, such devices struggle to process hyperdimensional visual data under the energy and processing constraints of embedded devices. This can be overcome by bringing in similar dynamic scalability when processing the hyperdimensional data. HYPERSCALES will enable such always-on hyper-dimensional, scalable sensing, focusing on visual sensors. The goal is to demonstrate a ring of many low-cost visual sensors, capturing a rich datastream of omnidirectional information. Using a new paradigm of online scalable neural networks, and aligned dynamic scaling of customly designed hardware, always-on visual awareness will become feasible with an order or magnitude lower energy consumption than the state-of-theart. Unique is the tight interplay between algorithmic (Prof. Dambre) and hardware (Prof. Verhelst) tunability." "Sense to exion: Raising awareness and deploying wearable sensors and exoskeletons to prevent physical strain in enterprises: development of a matchmaking tool" "Sofie Verhaegen" "Centre of expertise in Care and Well-being - research group Mobilab&Care, Thomas More Kempen vzw" "Sense to eXion is een project waarin we ondernemingen helpen om fysieke overbelasting te voorkomen bij hun werknemers. We zetten enerzijds in op sensibilisering en anderzijds op draagbare technologie zoals exoskeletons, preventieve orthesen en sensoren. Het hoofddoel is om bedrijven te sensibiliseren over fysieke overbelasting op de werkvloer. Daarbij leren we hen hoe ze slimme sensoren en exoskeletons kunnen inzetten om overbelasting op te sporen en aan te pakken. Bovendien willen we ondernemingen hun kennis vergroten over fysieke overbelastingen en over preventie met draagbare technologie. Dat doen we door hen actief te betrekken bij het uitvoeren van enkele cases. We geven ook advies over het ontwerp en de ontwikkeling van preventieve orthesen en exoskeletons. Daarnaast willen we werkposten matchen met hun risico’s én met mogelijke inzetbare technologieën om die risico’s te verminderen. Daarvoor ontwikkelen we een evidence-based productonafhankelijk keuze-instrument. Het zal ondernemingen helpen bij het maken van de juiste technologiekeuze. We willen ook studenten betrekken door de projectresultaten en tools te integreren in lessen en projecten en door workshops te organiseren. Fysieke overbelasting leidt vaak tot musculoskeletale aandoeningen en die zijn de belangrijkste oorzaak van arbeidsongeschiktheid en verzuim op het werk. Bedrijven waar werknemers door zwaar werk, repetitieve handelingen of oncomfortabele statische houdingen gevoelig zijn voor musculoskeletale aandoeningen, zijn op zoek naar oplossingen om hun werknemers te helpen. De laatste jaren worden er veel exoskeletons en sensoren op de markt gebracht, maar de kennis over het gebruik en de inzetbaarheid is nog heel klein in het werkveld. Daarom is dit project relevant voor: • Ondernemingen die willen inzetten op de fysieke gezondheid van hun werknemers. • Ondernemingen waar risicovolle professionele activiteiten worden uitgevoerd zoals zwaar werk, repetitieve handelingen of oncomfortabele statische houdingen. • Verdelers en ontwikkelaars van slimme sensoren, exoskeletons of preventieve technologie. • Ondernemingen en organisaties die diensten aanbieden ter preventie van fysieke overbelasting." "Nanodiamond Spin-Magnetometer and FRET Sensors: a new route for molecular resolution neuronal and network-level imaging" "Milos NESLADEK" "Materials Physics" "The availability of contactless tools for real-time dynamic biochemical monitoring in cells can significantly enhance our current knowledge about molecular-scale biophysics. An example is optical probing of bioelectrical signals in single neurons and neural networks via their electromagnetic activity. Such nanoscale mapping could resolve the gap between neural cellular and emerging network-level functions and deciphering the brain connectomics - the wiring diagram of the brain. The proposed project develops novel neural network imaging based on optically-detected magnetic resonance (ODMR) and Foerster Resonance Energy Transfer (FRET) principles, manipulating with single photons and spins in nanodiamond (ND) particles. The ND particles can be fabricated containing NV defect centres and used for optical quantum imaging. This technique will be used for monitoring ultra-weak electromagnetic fields in neurons, intracellulary transfected with ND particles. The ND particles will be covalently grafted with suitable biomolecules and anchored in the cell membrane close to synaptic events. The optical signals are deconvoluted to vector electric or magnetic fields and related to action potential mapping. The project addresses the fundamental aspects of chemical functionalision of ND particles and single spin and single photon imaging, as a relevant replacement of chemical tags or quantum-dot markers for modern research in biology." "DIAMOND QUANTUM SENSORS AND IMAGERS (DIAQUANT)." "André Vantomme" "Quantum Solid State Physics (QSP)" "DIAQUANT will develop quantum sensors (diamond sensors) and imagers for the detection and processing of the spatial and time-dependent distributions of external fields, with an unsurpassed ratio of sensitivity and compactness. The sensors can be controlled quickly, adjusted in size to the size of micro and nano circuits, temperature independent, with low power consumption and independent of ambient noise.Quanturn sensors and imagers bring revolutionary sensor technology to detect magnetic fields, their gradients and intertional forces, because their sensitivity is determined by the massless nature of the quantum states such as the electron spins of the NV color centers in diamond or their nuclear spins.The quantum readout makes it possible to realize a direct decoupling of external electromagnetic noise, which is a huge problem for classical technologies where advanced external shield methods have to be used.Finally, the quantum way for detection, using spin projection protocols, can also switch off any temperature dependency, which is an important advantage of DIAQUANT sensors. "