Title Promoter Affiliations Abstract "Electron tomography combined with state-of-the-art electrochemistry to gain better insight into the role of the different components of the active layer in a CO2 electrolyzer." "Nick Daems" "Applied Electrochemistry & Catalysis (ELCAT)" "Renewable energy sources can offer a solution for excessive emissions of greenhouse gases and to the expected decrease in availability of fossil fuels in the near future. Both problems would find a common solution if we were able to develop energy-efficient processes to convert (low concentrated) CO2 streams into fuels and useful chemical products, ensuring a positive economic and environmental balance. One possible strategy is to use H2O and CO2 as renewable feedstock for electrochemical production of fuels and chemicals (e.g. carbon monoxide, formic acid or methanol), employing excess electricity generated by renewable power sources (like wind or solar) to drive the reactions. At the moment, the electrochemical reduction of CO2 is not yet industrially viable, mainly due to the lack of a good electrocatalyst. While a wide range of electrocatalysts is currently being investigated in an attempt to improve the overall performance this was currently without success. Here we propose the combination of state-of-the-art electrochemistry with an advanced TEM characterization as a route towards the discovery of new high-performance CO2 reduction electrocatalysts. A key aspect to achieve this goal can be found in the interaction between the gas diffusion electrode (morphology and composition) and the novel electrocatalysts. Finally, also a more engineering aspect of the overall process, i.e. the coating of the electrode with the active material will be optimized." "Molecular design of 'Frozen Aptamers': Aptamers with enhanced properties by covalent and non-covalent stabilization using functionalized nucleotides: a combined modelling, NMR and electrochemistry approach." "Karolien De Wael" "Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab), Ghent University, AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)" "The on-site and higly selective detection of cocaine and other important target analytes such as antibiotic residues in waste water remains a challenging area of research. In this project, we wish to better understand and eventually improve analytical detection systems that use short DNA sequences for selective recognition of molecules of interest – called aptamers – followed by the generation of electrical signals upon binding.To achieve this we will first study the fundamental influence of structure and flexibility of aptamers on binding and current generation. This will further be mapped using computer modelling, NMR spectroscopy and ITC measurements. After obtaining structural knowledge, we aim to chemically stabilize the high affinity aptamers by introduction of chemically modified building blocks in the aptamer nucleic acid sequence. The additional functional groups thus introduced in the aptamer should allow to enhance the stability of the folded ligand binding state of the aptamer. In this way, we hope to contribute to the development of more robust apasensors. This should ultimately and on the long term lead to improved, robust, simple and mobile devices allowing to be handled on-site in different fields of application (e.g. law enforcement agencies, medical care environment, food industry)." "Coupling the inhibition effect of bacteria with amperometric readout for the detection of antibiotics (BACSENS)." "Dieter Vandenheuvel" "AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation), Environmental Ecology & Applied Microbiology (ENdEMIC)" "Most of the farmers and industries rely on the microbial inhibition tests as a screening tool for a broad range of antibiotics because it is natural, intuitive, and simple enough to be operated by non-specialists outside laboratories. Unfortunately, it suffers from drawbacks such as long analysis time and sensitivity issues. To improve the on-site screening test, we introduce the pioneering idea to couple cost effective and sensitive amperometric sensors with bacterial inhibition tests. Our method will lower the risks for public health and operational costs for industries." "Fundamental insight into the role of the support and electrocatalyst in CO2 electrolyzers: are carbon-based materials the solution or the problem?" "Tom Breugelmans" "Applied Electrochemistry & Catalysis (ELCAT)" "Renewable energy sources can offer a solution for excessive emissions of greenhouse gases and to the expected decrease in availability of fossil fuels in the near future. Both problems would find a common solution if we were able to develop energy-efficient processes to convert (low concentrated) CO2 streams into fuels and useful chemical products, ensuring a positive economic and environmental balance. One possible strategy is to use H2O and CO2 as renewable feedstock for electrochemical production of fuels and chemicals (e.g. carbon monoxide, formic acid or methanol), employing excess electricity generated by renewable power sources (like wind or solar) to drive the reactions. At the moment, the electrochemical reduction of CO2 is not yet industrially viable, mainly due to the lack of a good electrocatalyst. While a wide range of electrocatalysts is currently being investigated in an attempt to improve the overall performance this was currently without success. Here we propose a combination of state-of-the-art electrochemistry with high-end TEM characterization in the face of the discovery of new high-performance CO2 reduction electrocatalysts to methanol or formic acid. A key aspect to achieve this goal can be found in the interaction between the gas diffusion electrode (morphology and compostion) and the novel electrocatalysts. Finally, also a more engineering aspect of the overall process, i.e. the coating of the electrode with the active material will be optimized." "New redox mediators and improved electrocatalytic materials for the functionalization of carbon-hydrogen bonds by electrosynthesis." "Tom Breugelmans" "Organic synthesis (ORSY), Applied Electrochemistry & Catalysis (ELCAT)" "Functionalization of inert carbon-hydrogen (C-H) bonds is an important reaction in the chemical industry. The introduction of functional groups (e.g. oxygen, nitrogen, sulfur, … atom) in otherwise inert molecules is necessary to construct more complex molecules for the bulk and fine chemicals industry. However, an organic molecule contains multiple C-H bonds (the most common bond in organic molecules) and the selective functionalization of a specific C-H bond with chemical reactants is therefore very difficult to achieve. New chemoselective C-H functionalization methods for late stage functionalization with the production of low amounts of (harmful) waste are therefore important to make organic synthesis more efficient and sustainable. Electrosynthesis is a promising alternative, although currently suffering from low chemoselectivity. By adding a homogeneous catalyst (redox mediator) this lingering problem can be overcome, but an electrochemically activation step of the redox mediator is required. In the current state-of-the-art this is performed with inert electrode materials (e.g. glassy carbon), resulting in low yield and energy intensive processes with excessive required amounts of redox mediator. Hence, there is a strong need for improved electrocatalytic materials in combination with more active redox mediators. In general this research projects aims to develop new electrocatalytic materials for the charge transfer to redox mediators for C-H bond cleavage in organic substrates. To achieve this goal we will use a step-wise electrocatalytic approach to obtain an optimal catalytic performance for the charge transfer to redox mediators. In a first step, bulk electrode materials will undergo a preliminary screening to identify possible materials that possess high electrocatalytic activities. In a second step, the activity of the electrode surface is further improved by (i) moving towards nanoparticles dispersed on a support and (ii) by introducing an alloy with a second or third metal. The redox mediator represents one of the key-elements in successfully implementing C-H bond functionalization. Therefore, we will examine redox mediators in combination with the electrocatalysts. As a case-study the electrochemical C-H oxygenation making use of quinuclidine mediator will be selected as model reaction.The above mentioned research questions will require an intertwined approach combining electrocatalysis (expertise of the ART research group) with state of the art organic synthesis (expertise of the ORSY research group)." "Highly visible light responsive black titania for photo-electrochemical applications: the electrosensing of polyphenols in flow mode." "Karolien De Wael" "Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab), Applied Electrochemistry & Catalysis (ELCAT), Laboratory of adsorption and catalysis (LADCA), AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)" "Recent advances in extending the light absorption range of titania (TiO2) into the visible region has resulted in a new material, i.e. black TiO2 with a bandgap around 1.5 eV. Black TiO2 is a promising candidate for photo-(electro)catalysis under near infrared light owing to its narrow band gap and its improved electronic conductivity which only limited attention has been paid to it to use as a photoelectrochemical sensor. Using photo-electrocatalysts in stationary electrochemical systems commonly face poisoning phenomena due to the generated product seriously affecting the electrochemical detection. In order to improve the recyclability of the photo-electrocatalyst, a flow photoelectrochemical cell is the best choice due to continues movement of a carrier solution to the electrode surface. The combination of a flow cell and an electrochemical setup integrates the benefit of two systems suchas high mass diffusion, much lower amount of sample requirements, while warranting strong signals and a high detection sensitivity.The core idea of my proposal is to synthesize and exploit black (reduced) titania as a highly visible light responsive material in a flow analysis setup to detect polyphenols via photo-electrochemistry." "Narcoreader: product development." "Karolien De Wael" "Product development, AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)" "Detection and identification of illegal drugs is a major task of both police and customs officials in order to prevent circulation and dealing in our society. An optimal test is crucial to support this process. Within the AXES research group, a new method was developed to achieve a fast and accurate detection of cocaine at low cost, using an electrochemical sensor. By using this method, the limitations and restrictions of existing tests can be tackled (i.e. interpretation sensitivity, false positives/negatives, and environmental influences). The developed technique is currently operational in a lab setting, but needs to be adjusted and translated to be effective on location. Currently, within other projects, the method is optimized to achieve multi-drug detection. This POC project focusses on the development of a user-friendly and wearable device for drug detection that can be used by different authorities without scientific knowledge or training. By means of methods from Product Development, the current lab setting will be translated into a usable product for reliable testing (in typical Belgian whether conditions, wearing gloves, in an environment where no tables or other surfaces are available). The project includes thorough testing and verification with future end users." "Synergy of plasmonic structures, affinity elements and photosensitizers for electrosensing ofpharmaceuticals" "Karolien De Wael" "Sustainable Energy, Air and Water Technology (DuEL), Institutional Research Unit, AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)" "The main objective of the PLASMON-ELECTROLIGHT project is to elaborate an efficient sensing strategy to measure pharmaceuticals. The detection technique will be developed from an original photoelectrochemical detection strategy that is boosted by advanced photosensitizers, plasmonic enhancement, and affinity recognition.The photoactive hybrid materials must be designed carefully through rational choice of photosensitizers and metallic nanostructures, theoretical modeling, and experimental correlations. Next, the materials will be combined with biorecognition elements and employed as photoelectrochemical sensor. Our objectives also include a better understanding of the mechanism for plasmonic enhancement of photosensitizers' activity, developing new photoreactive materials and better methods to tests them. This will contribute to different field of chemical sensing, material science, and energy conversion." "Support EU-project BorderSens." "Karolien De Wael" "AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)" "Combining robust sensor technologies with the inherent advantages of electrochemical strategies, nano-molecularly imprinted polymers, and multivariate and pattern data analysis, BorderSens will enable highly accurate selective detection of trace levels of illicit drugs and precursors. With borders being important gateways for the entrance of illicit drugs and their precursors, custom and border control authorities are facing pertaining challenges to detect such dangerous substances and safeguard the public. The main challenges posed by currently used on-site methods to detect illicit drugs and precursors are low accuracy, in the case of colour tests, and high cost and low portability, in the case of spectroscopic tests. In the light of a pressing need for better drug test systems at EU borders, the ultimate research aim of the BorderSens is to develop a portable, wireless single prototype device with the capability to quickly test for different types of drugs, precursors and adulterants/cutting agents, with outstanding accuracy and reduced false positives and false negatives. BorderSens will demonstrate the innovative technological solutions at seven demonstrations sites at EU borders with end-users and ensure exploitation plans guaranteeing strong impact. BorderSens brings together universities, a big manufacturer of electrochemical sensors, a specialised SME, ten end-users i.e. forensic institutes, police forces and border authorities, and a high quality external advisory board, to provide an excellent scientific-technical perspective and a straightforward exploitation route, with great impact on the safety of EU citizens." "Electronics to high value chemical products (E2C)." "Tom Breugelmans" "Applied Electrochemistry & Catalysis (ELCAT)" "The overall objective of the project is to stimulate investment in and implementation of Power-to-X technologies by developing innovative direct and indirect conversion processes for the chemical industry towards higher TRL's, while making use of renewable electricity and lowering the carbon footprint. With these technologies, valuable fuels and platform chemicals can be produced from renewable raw materials while decreasing costs and increasing flexibility. The aim is to develop at least two pilot demonstrators at TRL 6 – 7 and two bench scale pilot installations at TRL 4 with supporting feasibility evaluations, thereby lowering the risks of investment for companies, especially SME's, and positioning the 2 Seas region as an innovation leader in Power-to-X sustainable technologies. For more information visit the website https://www.interreg2seas.eu/en/E2C."